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Preface

There have been two revolutions in the way we view the physical world in the 
twentieth century: relativity and quantum mechanics. In quantum mechanics the 
revolution has been both profound—requiring a dramatic revision in the structure of 
the laws of mechanics that govern the behavior of all particles, be they electrons 
or photons—and far-reaching in its impact—determining the stability of matter 
itself, shaping the interactions of particles on the atomic, nuclear, and particle 
physics level, and leading to macroscopic quantum effects ranging from lasers and 
superconductivity to neutron stars and radiation from black holes. Moreover, in a 
triumph for twentieth-century physics, special relativity and quantum mechanics 
have been joined together in the form of quantum field theory. Field theories such as 
quantum electrodynamics have been tested with an extremely high precision, with 
agreement between theory and experiment verified to better than nine significant 
figures. It should be emphasized that while our understanding of the laws of physics 
is continually evolving, always being subjected to experimental scrutiny, so far no 
confirmed discrepancy between theory and experiment for quantum mechanics has 
been detected.

This book is intended for an upper-division course in quantum mechanics. The 
most likely audience for the book consistfrof students who have completed a course in 
modem physics that includes an introduction to quantum mechanics that emphasizes 
wave mechanics. Rather than continue with a similar approach in a second course, I 
have chosen to introduce the fundamentals of quantum mechanics through a detailed 
discussion of the physics of intrinsic spin. Such an approach has a number of 
significant advantages. First, students find starting a course with something “new” 
such as intrinsic spin both interesting and exciting, and they enjoy making the 
connections with what they have seen before. Second, spin systems provide us with 
many beautiful but straightforward illustrations of the essential structure of quantum 
mechanics, a structure that is not obscured by the mathematics of wave mechanics. 
Quantum mechanics can be presented through concrete examples. I believe that most 
physicists learn through specific examples and then find it easy to generalize. By
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starting with spin, students are given plenty of time to assimilate this novel and 
striking material. I have found that they seem to learn this key introductory material 
easily and well—material that was often perceived to be difficult when I came to it 
midway through a course that began with wave mechanics. Third, when we do come 
to wave mechanics, students see that wave mechanics is only one aspect of quantum 
mechanics, not the fundamental core of the subject. They see at an early stage that 
wave mechanics and matrix mechanics are just different ways of calculating based 
on the same underlying quantum mechanics and that the approach they use depends 
on the particular problem they are addressing.

I have been inspired by two sources, an “introductory” treatment in Volume III 
of The Feynman Lectures on Physics and an advanced exposition in J. J. Sakurai’s 
Modern Quantum Mechanics. Overall, I believe that wave mechanics is probably 
the best way to introduce students to quantum mechanics. Wave mechanics makes 
the largest overlap with what students know from classical mechanics and shows 
them the strange behavior of quantum mechanics in a familiar environment. This 
is probably why students find their first introduction to quantum mechanics so 
stimulating. However, starting a second course with wave mechanics runs the risk 
of diminishing much of the excitement and enthusiasm for the entirely new way of 
viewing nature that is demanded by quantum mechanics. It becomes sort of old hat, 
material the students has seen before, repeated in more depth. It is, I believe, with the 
second exposure to quantum mechanics that something like Feynman’s approach has 
its best chance to be effective. But to be effective, a quantum mechanics text needs 
to make lots of contact with the way most physicists think and calculate in quantum 
mechanics using the language of kets and operators. This is Sakurai’s approach in 
his graduate-level textbook. In a sense, the approach that I am presenting here can 
be viewed as a superposition of these two approaches, but at the junior-senior level.

Chapter 1 introduces the concepts of the quantum state vector, complex proba­
bility amplitudes, and the probabilistic interpretation of quantum mechanics in the 
context of analyzing a number of Stem-Gerlach experiments carried out with spin- 
|  particles. By introducing ket vectors at the beginning, we have the framework for 
thinking about states as having an existence quite apart from the way we happen to 
choose to represent them, whether it be with matrix mechanics, which is discussed 
at length in Chapter 2, or, where appropriate, with wave mechanics, which is in­
troduced in Chapter 6. Moreover, there is a natural role for operators; in Chapter 2 
they rotate spin states so that the spin “points” in a different direction. I do not fol­
low a postulatory approach, but rather I allow the basic physics of this spin system 
to drive the introduction of concepts such as Hermitian operators, eigenvalues, and 
eigenstates.

In Chapter 3 the commutation relations of the generators of rotations are deter­
mined from the behavior of ordinary vectors under rotations. Most of the material 
in this chapter is fairly conventional; what is not so conventional is the introduc-
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tion of operator techniques for determining the angular momentum eigenstates and 
eigenvalue spectrum and the derivation of the uncertainty relations from the com­
mutation relations at such an early stage. Since so much of our initial discussion 
of quantum mechanics revolves around intrinsic spin, it is important for students to 
see how quantum mechanics can be used to determine from first principles the spin 
states that have been introduced in Chapters 1 and 2, without having to appeal only 
to experimental results.

Chapter 4 is devoted to time evolution of states. The natural operation in time 
development is to translate states forward in time. The Hamiltonian enters as the 
generator of time translations, and the states are shown to obey the Schrodinger 
equation. Most of the chapter is devoted to physical examples. In Chapter 5 another 
physical system, the spin-spin interaction of an electron and proton in the ground 
state of hydrogen, is used to introduce the spin states of two spin-^ particles. The 
total-spin-0 state serves as the basis for a discussion of the Einstein-Podolsky-Rosen 
(EPR) paradox and the Bell inequalities.

The main theme of Chapter 6 is making contact with the usual formalism of wave 
mechanics. The special problems in dealing with states such as position and momen­
tum states that have a continuous eigenvalue spectrum are analyzed. The momentum 
operator enters naturally as the generator of translations. Sections 6.8 through 6.10 
include a general discussion with examples of solutions to the Schrodinger equation 
that can serve as a review for students with a good background in one-dimensional 
wave mechanics.

Chapter 7 is devoted to the one-dimensional simple harmonic oscillator, which 
merits a chapter all its own. Although the material in Chapter 8 on path integrals 
can be skipped without affecting subsequent chapters (with the exception of Sec­
tion 14.1, on the Aharonov-Bohm effect), I believe that path integrals should be 
discussed, if possible, since this formalism provides real insight into quantum dy­
namics. However, I have found it difficult to fit this material into our one-semester 
course, which is taken by all physics majors as well as some students majoring in 
other disciplines. Rather, I have choserfto postpone path integrals to a second course 
and then to insert the material in Chapter 8 before Chapter 14. Incidentally, the ma­
terial on path integrals is the only part of the book that may require students to have 
had an upper-division classical mechanics course, one in which the principle of least 
action is discussed.

Chapters 9 through 13 cover fully three-dimensional problems, including the 
two-body problem, orbital angular momentum, central potentials, time-independent 
perturbations, identical particles, and scattering. An effort has been made to include 
as many physical examples as possible.

Although this is a textbook on nonrelativistic quantum mechanics, I have chosen 
to include a discussion of the quantized radiation field in the final chapter, Chapter 14. 
The use of ket and bra vectors from the beginning and the discussion of solutions
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to problems such as angular momentum and the harmonic oscillator in terms of 
abstract raising and lowering operators should have helped to prepare the student 
for the exciting jump to a quantized electromagnetic field. By quantizing this field, 
we can really understand the properties of photons, we can calculate the lifetimes for 
spontaneous emission from first principles, and we can understand why a laser works. 
By looking at higher order processes such as photon-atom scattering, we can also see 
the essentials of Feynman diagrams. Although the atom is treated nonrelativistically, 
it is still possible to gain a sense of what quantum field theory is all about at this level 
without having to face the complications of the relativistic Dirac equation. For the 
instructor who wishes to cover time-dependent perturbation theory but does not have 
time for all of the chapter, Section 14.5 stands on its own.

Although SI units are the standard for undergraduate education in electricity 
and magnetism, I have chosen in the text to use Gaussian units, which are more 
commonly used to describe microscopic phenomena. However, with the possible 
exception of the last chapter, with its quantum treatment of the electromagnetic field, 
the choice of units has little impact. My own experience suggests that students who 
are generally at home with SI units are comfortable (as indicated in a number of 
footnotes through the text) replacing e2 with £2/47T€0 or ignoring the factor of c 
in the Bohr magneton whenever they need to carry out numerical calculations. In 
addition, electromagnetic units are discussed in Appendix A.

In writing the second edition, I have added two sections to Chapter 5, one on 
entanglement and quantum teleportation and the other on the density operator. Given 
the importance of entanglement in quantum mechanics, it may seem strange, as it 
does to me now, to have written a quantum mechanics textbook without explicit use 
of the word entanglement. The concept of entanglement is, of course, at the heart 
of the discussion of the EPR paradox, which focused on the entangled state of two 
spin-j particles in a spin-singlet state. Nonetheless, it wasn’t until the early 1990s, 
when topics such as quantum teleportation came to the fore, that the importance of 
entanglement as a fundamental resource that can be utilized in novel ways was fully 
appreciated and the term entanglement began to be widely used. I am also somewhat 
embarrassed not to have included a discussion of the density operator in the first 
edition. Unlike a textbook author, the experimentalist does not necessarily have the 
luxury of being able to focus on pure states. Thus there is good reason to introduce 
the density operator (and the density matrix) as a systematic way to deal with mixed 
states as well as pure states in quantum mechanics. I have added a section on coherent 
states of the harmonic oscillator to Chapter 7. Coherent states were first derived by 
Schrodinger in his efforts to find states that satisfy the correspondence principle. 
The real utility of these states is most apparent in Chapter 14, where it is seen that 
coherent states come closest to representing classical electromagnetic waves with a 
well-defined phase. I have also added a section to Chapter 14 on cavity quantum 
electrodynamics, showing how the interaction of the quantized electromagnetic
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field with atoms is modified by confinement in a reflective cavity. Like quantum 
teleportation, cavity quantum electrodynamics is a topic that really came to the fore 
in the 1990s. In addition to these new sections, I have added numerous worked 
example problems to the text, with the hope that these examples will help students 
in mastering quantum mechanics. I have also increased the end-of-chapter problems 
by 25 percent.

There is almost certainly enough material here for a full-year course. For a one- 
semester course, I have covered the material through Chapter 12, omitting Sections 
6.7 through 6.10 and, as noted earlier, Chapter 8. The material in the latter half of 
Chapter 6 is covered thoroughly in our introductory course on quantum physics. See 
John S. Townsend, Quantum Physics: A Fundamental Approach to Modem Physics, 
University Science Books, 2010. In addition to Chapter 8, other sections that might 
be omitted in a one-semester course include parts of Chapter 5, Section 9.7, and 
Sections 11.5 through 11.9. Or one might choose to go as far as Chapter 10 and 
reserve the remaining material for a later course.

A comprehensive solutions manual for the instructor is available from the pub­
lisher, upon request of the instructor.

Finally, some grateful acknowledgments are certainly in order. Students in my 
quantum mechanics classes have given me useful feedback as I have taught from the 
book over the years. Colleagues at Harvey Mudd College who have offered valuable 
comments as well as encouragement include Bob Cave, Chih-Yung Chen, Tom Don­
nelly, Tom Helliwell, Theresa Lynn, and Peter Saeta. Art Weldon of West Virginia 
University suggested a number of ways to improve the accuracy and effectiveness 
of the first edition. This text was initially published in the McGraw-Hill Interna­
tional Series in Pure and Applied Physics. I have benefited from comments from the 
following reviewers: William Dalton, St. Cloud State University; Michael Grady, 
SUNY-Fredonia; Richard Hazeltine, University of Texas at Austin; Jack Mochel, 
University of Illinois at Urbana-Champaign; and Jae Y. Park, North Carolina State 
University. For the first edition, the Pew Science Program provided support for Doug 
Dunston and Doug Ridgway, two Harvey-Mudd College students, who helped in the 
preparation of the text and figures, respectively, and Helen White helped in checking 
the galley proofs. A number of people have kindly given me feedback on the material 
for the second edition, including Rich Holman, Carnegie Mellon University; Randy 
Hulet, Rice University; Jim Napolitano, RPI; Tom Moore and David Tanenbaum, 
Pomona College; and John Taylor, University of Colorado.

I have been fortunate to have the production of the book carried out by a very 
capable group of individuals headed by Paul Anagnostopoulos, the project manager. 
In addition to Paul, I want to thank Lee Young for copyediting, Joe Snowden for 
entering the copyedits and laying out the pages, Tom Webster for the artwork, 
MaryEllen Oliver for her amazingly thorough job of proofreading, Yvonne Tsang 
for text design, and Genette Itoko McGrew for her creative cover design. I also wish
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to thank Jane Ellis and Bruce Armbruster of University Science Books not only 
for their assistance but also for the care and attention to detail they have taken in 
preparing this new edition of the book. And I especially want to thank ray wife, 
Ellen, for cheerfully letting me devote so much time to this project.

Please do not hesitate to contact me if you find errors or have suggestions that 
might improve the book.

John S. Townsend 
Department of Physics 
Harvey Mudd College 
Claremont, CA 91711 
townsend@hmc.edu
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CHAPTER 1

Stern-Gerlach Experiments

We begin our discussion of quantum mechanics with a conceptually simple experi­
ment in which we measure a component of the intrinsic spin angular momentum of 
an atom. This experiment was first carried out by O. Stem and W. Gerlach in 1922 
using a beam of silver atoms. We will refer to the measuring apparatus as a Stern- 
Gerlach device. The results of experiments with a number of such devices are easy 
to describe but, as we shall see, nonetheless startling in their consequences.

1.1 The Original Stern-Gerlach Experiment

Before analyzing the experiment, we need to know something about the relationship 
between the intrinsic spin angular momentum of a particle and its corresponding 
magnetic moment. To the classical physicist, angular momentum is always orbital 
angular momentum, namely, L =  r x p. Although the Earth is said to have spin 
angular momentum Ia> due to its rotation about its axis as well as orbital angular 
momentum due to its revolution about the Sun, both types of angular momentum are 
just different forms of L. The intrinsic spin angular momentum S of a microscopic 
particle is not at all of the same sort as orbital angular momentum, but it is real 
angular momentum nonetheless.

To get a feeling for the relationship that exists between the angular momentum of 
a charged particle and its corresponding magnetic moment, we first use a classical 
example and then point out some of its limitations. Consider a point particle with 
charge q and mass m moving in a circular orbit of radius r with speed v. The magnetic 
moment ft is given by

(1.1)
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where A is the area of the circle formed by the orbit, the current I is the charge q 
divided by the period T =  (2nr/v), and L =  mvr is the orbital angular momentum 
of the particle.1 Since the magnetic moment and the orbital angular momentum are 
parallel or antiparallel depending on the sign of the charge q , we may express this 
relationship in the vector form

M =  ~  L (1.2)
2 me

This relationship between L and ft turns out to be generally true whenever the mass 
and charge coincide in space. One can obtain different constants of proportionality 
by adjusting the charge and mass distributions independently. For example, a solid 
spherical ball of mass m rotating about an axis through its center with the charge q 
distributed uniformly only on the surface of the ball has a constant of proportionality 
of 5q/6mc.

When we come to intrinsic spin angular momentum of a particle, we write

=  ^ S  (1.3)
2 me

where the value of the constant g is experimentally determined to be g =  2.00 for 
an electron, g = 5.58 for a proton, or even g = —3.82 for a neutron.2 One might be 
tempted to presume that g is telling us about how the charge and mass are distributed 
for the different particles and that intrinsic spin angular momentum is just orbital 
angular momentum of the particle itself as it spins about its axis. We will see as we 
go along that such a simple classical picture of intrinsic spin is entirely untenable 
and that the intrinsic spin angular momentum we are discussing is a very different 
beast indeed. In fact, it appears that even a point particle in quantum mechanics may 
have intrinsic spin angular momentum.3 Although there are no classical arguments 
that we can give to justify (1.3), we can note that such a relationship between the

1 If you haven’t seen them before, the Gaussian units we are using for electromagnetism may 
take a little getting used to. A comparison of SI and Gaussian units is given in Appendix A. In 
SI units the magnetic moment is just I A, so you can ignore the factor of c, the speed of light, in 
expressions such as (1.1) if you wish to convert to SI units.

2 Each of these g factors has its own experimental uncertainty. Recent measurements by B. 
Odom, D. Hanneke, B. D’Urso, and G, Gabrielse, Phys. Rev. Lett. 97,030801 (2006), have shown 
that g /2  for an electron is 1.00115965218085(76), where the factor of 76 reflects the uncertainty 
in the last two places. Relativistic quantum mechanics predicts that g =  2 for an electron. The 
deviations from this value can be accounted for by quantum field theory. The much larger deviations 
from g =  2 for the proton and the (neutral) neutron are due to the fact that these particles are not 
fundamental but are composed of charged constituents called quarks.

3 It is amusing to note that in 1925 S. Goudsmit and G. Uhlenbeck as graduate students 
“discovered” the electron’s spin from an analysis of atomic spectra. They were trying to understand 
why the optical spectra of alkali atoms such as sodium are composed of a pair of closely spaced 
lines, such as the sodium doublet. Goudsmit and Uhlenbeck realized that an additional degree of 
freedom (an independent coordinate) was required, a degree of freedom that they could understand 
only if they assumed the electron was a small ball of charge that could rotate about an axis.
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(a)

Figure 1.1 (a) A schematic diagram o f the Stern-Gerlach experiment, (b) A cross-sectional 
view o f  the pole pieces o f  the magnet depicting the inhomogeneous magnetic field they 
produce.

magnetic moment and the intrinsic spin angular momentum is at least consistent with 
dimensional analysis. At this stage, you can think of g as a dimensionless factor that 
has been inserted to make the magnitudes as well as the units come out right.

Let’s turn to the Stern-Gerlach experiment itself. Figure 1.1a shows a schematic 
diagram of the apparatus. A collimated beam of silver atoms is produced by evap­
orating silver in a hot oven and selecting those atoms that pass through a series of 
narrow slits. The beam is then directed between the poles of a magnet. One of the 
pole pieces is flat; the other has a sharp tip. Such a magnet produces an inhomoge­
neous magnetic field, as shown in Fig. 1.1b. When a neutral atom with a magnetic 
moment fi enters the magnetic field B, it experiences a force F  =  V(/t • B), since 
—fi ■ B is the energy of interaction of a magnetic dipole with an external magnetic 
field. If we call the direction in which the inhomogeneous magnetic field gradient is 
large the z direction, we see that

„ 9B dBz 
Fz = V- —  - V z —  oz oz

(1.4)

In this way they could account for the electron’s spin angular momentum and magnetic dipole 
moment. The splitting of the energy levels that was needed to account for the doublet could then 
be understood as due to the potential energy o f interaction o f the electron’s magnetic moment in 
the internal magnetic field of the atom (see Section 11.5). Goudsmit and Uhlenbeck wrote up their 
results for their advisor P. Ehrenfest, who then advised them to discuss the matter with H. Lorentz. 
When Lorentz showed them that a classical model o f the electron required that the electron must 
be spinning at a speed on the surface approximately ten times the speed of light, they went to 
Ehrenfest to tell him of their foolishness. He informed them that he had already submitted their 
paper for publication and that they shouldn’t worry since they were “both young enough to be able 
to afford a stupidity.” Physics Today, June 1976, pp. 40-48.
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Notice that we have taken the magnetic field gradient dBz/ ‘dz in the figure to be neg­
ative, so that if i±z is negative as well, then Fz is positive and the atoms are deflected 
in the positive z direction. Classically, \xz — \fi\ cos 6 , where 6 is the angle that the 
magnetic moment fi makes with the z axis. Thus n z should take on a continuum of 
values ranging from +n  to —fi. Since the atoms coming from the oven are not polar­
ized with their magnetic moments pointing in a preferred direction, we should find a 
corresponding continuum of deflections. In the original Stern-Gerlach experiment, 
the silver atoms were detected by allowing them to build up to a visible deposit on a 
glass plate. Figure 1.2 shows the results of this original experiment. The surprising 
result is that fiz takes on only two values, corresponding to the values ± h f  2 for Sz. 
Numerically, h = h /liz  =  1.055 x 10“ 27 erg ■ s =  6.582 x 10“ 16 eV • s, where h 
is Planck’s constant.

1 f / f V j t  <*•**< „4kM k+u*— '*

Figure 1.2 A postcard from Walther Gerlach to N iels Bohr, dated February 8, 1922. 
Note that the images on the postcard have been rotated by 90° relative to Fig. 1.1, where 
the collimating slit is horizontal. The left-hand image o f  the beam profile without the 
magnetic field shows the effect o f  the finite width o f  this collimating slit. The right-hand 
image shows the beam profile with the magnetic field. Only in the center o f  the apparatus 
is the magnitude o f the magnetic field gradient sufficiently strong to cause splitting. The 
pattern is smeared because o f  the range o f  speeds o f  the atoms coming from the oven. 
Translation o f the message: “My esteemed Herr Bohr, attached is the continuation o f  
our work [vide Zeitschr. f  Phys. 8, 110 (1921)]: the experimental proof o f  directional 
quantization. We congratulate you on the confirmation o f  your theory! With respectful 
greetings. Your most humble Walther Gerlach.” Photograph reproduced with permission 
from the N iels Bohr Archive.
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Silver atoms are Composed of 47 electrons and a nucleus. Atomic theory tells 
us the total orbital and total spin angular momentum of 46 of the electrons is equal 
to zero, and the 47th electron has zero orbital angular momentum. Moreover, as 
(1.3) shows, the nucleus makes a very small contribution to the magnetic moment 
of the atom because the mass of the nucleus is so much larger than the mass of the 
electron. Therefore, the magnetic moment of the silver atom is effectively due to 
the magnetic moment of a single electron. Thus, in carrying out their experiment, 
Stem and Gerlach measured the component of the intrinsic spin angular momentum 
of an electron along the z axis and found it to take on only two discrete values, 
+h/2  and —h /2, commonly called “spin up” and “spin down,” respectively. Later, 
we will see that these values are characteristic of a spin-^ particle. Incidentally, we 
chose to make the bottom N pole piece of the Stem-Gerlach (SG) device the one 
with the sharp tip for a simple reason. With this configuration, Bz decreases as z 
increases, making dBz/dz negative. As we noted earlier, atoms with a negative fxz 
are deflected upward in this field. Now an electron has charge q =  —e and from (1.3) 
with g =  2, fiz = (—e/m ec)Sz. Thus a silver atom with Sz = H/2, a spin-up atom, 
will conveniently be deflected upward.

1.2 Four Experiments

Now that we have seen how the actual Stem-Gerlach experiment was done, let’s turn 
our attention to four simple experiments that will tell us much about the structure 
of quantum mechanics. If you like, you can think of these experiments as thought 
experiments so that we needn’t focus on any technical difficulties that might be faced 
in carrying them out.

EXPERIMENT 1

Let us say a particle that exits an SGz^device, one with its inhomogeneous magnetic 
field parallel to the z axis, with Sz = + hf2 is in the state |+z). The symbol |+z), 
known as a ket vector, is a convenient way of denoting this state. Suppose a beam 
of particles, each of which is in this state, enters another SGz device. We find that 
all the particles exit in the state |+z); that is, the measurement of Sz yields the value 
+h/2  for each of the particles, as indicated in Fig. 1.3a.

EXPERIMENT 2

Consider a beam of particles exiting the SGz device in the state |+z), as in Exper­
iment 1. We next send this beam into an SGx device, one with its inhomogeneous 
magnetic field oriented along the x axis. We find that 50 percent of the particles exit 
the second device with Sx = h/2  and are therefore in the state |+x), while the other 
50 percent exit with Sx = —h/2  and are therefore in the state |—x) (see Fig. 1.3b).
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•N0

(a)

No/2
NqI2

(b)

No/4
Nq/4

Figure 1.3 A block diagram of (a) Experiment 1, (b) Experiment 2, and (c) 
Experiment 3. N0 is the number of particles in the beam exiting the first SG  
device with Sz =  h/2.

For completeness, we also note that if we select the beam of particles exiting the 
initial SGz device in the state |—z) instead of |+z) and send this beam through the 
SGx device, we also find that 50 percent of the particles yield h/2  for a measurement 
of Sx and 50 percent yield — h/2  for a measurement of Sx.

EXPERIMENT 3

Let’s add a third SG device to Experiment 2, but this time with its inhomogeneous 
magnetic field oriented along the z axis (see Fig. 1.3c). If we send the beam of 
particles exiting the SGx device in the state |+x) through the last SGz device, we 
find that 50 percent of the particles exit in the state |+z) and 50 percent exit in the 
state |—z). Initially, none of the particles entering the SGx device was in the state 
|—z). Thus making the measurement of Sx with the second device has modified the 
state of the system. We cannot think of the beam entering the last SGz device as 
comprised of particles with Sz = h/2 and Sx = h/2 , as one might expect from the 
results of the measurements of the first two SG devices. This cannot account for 
the 50 percent of the beam that exits the last SGz device with Sz = —h/2. We will 
see shortly that Sz and Sx are incompatible observables; namely, we cannot know 
both of them simultaneously. In the macroscopic world, on the other hand, it seems 
to be easy to create a state with two definite nonzero components of the angular 
momentum, as, for example, is the case for a spinning top whose angular momentum 
is oriented at 45° to both the x and z axes. This is an indication that the quantum world 
is fundamentally different from our everyday macroscopic experience. We will see 
this more clearly as we go on to consider the next Stern-Gerlach experiment.
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r j \  / a r j\

Figure 1.4 (a) The three magnets o f  a modified Stem -Gerlach device, (b) The 
paths that a spin-up and spin-down particle would follow in traversing the 
device.

A MODIFIED SG DEVICE

In Experiment 4 we will use a modified SG device, introduced in thought experiments 
by Richard Feynman.4 This SG device, shown in Fig. 1.4a, is comprised of three 
high-gradient magnets, placed back to back, instead of a single magnet. The first 
magnet is a typical Stem-Gerlach magnet, followed by a second magnet with the 
same cross section as the first but twice as long and with the polarity opposite that 
of the first magnet. This second magnet pushes a particle with a magnetic moment 
in the opposite direction to the first magnet. Thus, in traversing the first half of the 
length of this magnet, the particle is decelerated and brought to rest in the transverse 
direction. In traversing the second half, the particle is accelerated back toward the 
axis. Although the third magnet is just like the first magnet, here it decelerates the 
particle so that the particle returns to the axis in the same state as it entered the first 
magnet. The net effect of the three magnets is to recombine the beams so that their 
condition upon exiting the third magnet is just like it was before entering the first 
magnet. Figure 1.4b indicates the paths that spin-up and spin-down particles would 
follow in this modified SG device.

You might think such a device serves no purpose, but we can use a modified 
SG device to make a measurement and select a particular spin state. For example.

4 R. P. Feynman, R, B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison- 
Wesley, Reading, MA, 1965, vol. 3, Chapter 5.
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Figure 1.5 Selecting a spin-up state with a modified Stem-Gerlach device 
by blocking the spin-down state.

if the direction of the inhomogeneous magnetic field of the three magnets is along 
the x axis, we can select a particle in the |+x) spin state by blocking the path that 
a particle in the |—x) spin state would take, as indicated in Fig. 1.5. Then all the 
particles exiting the modified three-magnet SGx device would be in the state |+x). 
In fact, we can repeat Experiment 3 with the SGx device replaced by a modified SGx 
device. If the |—x) state is filtered out by inserting a block in the lower path, we find, 
of course, exactly the same results as in Experiment 3; that is, when we measure 
with the last SGz device, we find 50 percent of the particles in the state |+z) and 
50 percent in the state |—z). Similarly, if we filter out the state |+x) by inserting a 
block in the upper path, we also find 50 percent of the particles exiting the last SGz 
device in the state |+z) and 50 percent in the state |—z).

EXPERIMENT 4

We are now ready for Experiment 4. As in Experiment 3, a beam of particles in the 
state |+z) from an initial SGz device enters an SGx device, but in this experiment it 
is a modified SGx device in which we do not block one of the paths and, therefore, 
do not make a measurement of Sx. We then send the beam from this modified SGx 
device into another SGz device. As indicated in Fig. 1.6, we find that 100 percent 
of the particles exit the last SGz device in the state |+z), just as if the modified SGx 
device were absent from the experiment and we were repeating Experiment 1.

Before carrying out Experiment 4, it might seem obvious that 50 percent of the 
particles passing through the modified SGx device are in the state |+x) and 50 percent 
are in the state |—x). But the results of Experiment 4 contradict this assumption, 
since, if it were true, we would expect to find 50 percent of the particles in the state 
|+z) and 50 percent of the particles in the state |—z) when the unfiltered beam exits 
the last SGz device. Our results are completely incompatible with the hypothesis that 
the particles traversing the modified SGx device have either Sx = fr/2 or Sx = —h/2.

Figure 1.6 A block diagram of Experiment 4. Note that we cannot indicate 
the path followed through the three-magnet modified SGx device since no 
measurement is carried out to select either a |4-x) or |—x) spin state.
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Moreover, even if we carry out the experiment with a beam of such low intensity that 
one particle at a time is passing through the SG devices, we still find that each of the 
particles has Sz = h/2  when it leaves the last SGz device. Thus, the issue raised by 
this experiment cannot be resolved by some funny business involving the interactions 
of the particles in the beams as they pass through the modified SGx device.

So far, we have been able to describe the results of these Stem-Gerlach exper­
iments simply in terms of the percentage of particles exiting the SG devices in a 
particular state because the experiments have been carried out on a beam of parti­
cles, namely, on a large number of particles. For a single particle, it is generally not 
possible to predict with certainty the outcome of the measurement in advance. In Ex­
periment 2, for example, before a measurement of Sx on a particle in the state | + z), all 
we can say is that there is a 50 percent probability of obtaining Sx = h/2  and a 50 per­
cent probability of obtaining Sx = —h/2. However, probabilities alone do not permit 
us to understand Experiment 4. We cannot explain the results of this experiment by 
adding the probabilities that a particle passing through the modified SGx device is in 
the state |+x) or in the state | -x ) , since this fails to account for the differences when 
comparing the results of Experiment 3, in which 50 percent of the particles in the state 
|+x) (or |—x)) yield Sz = —h/2, with the results of Experiment 4, in which none of 
the particles has Sz = —h/2  when exiting the last SGz device. Somehow in Experi­
ment 4 we must eliminate the probability that the particle is in the state | —z) when it 
enters the last SGz device. What we need is some sort of “interference” that can can­
cel out the |—z) state. Such interference is common in the physics of waves, where 
two waves can interfere destructively to produce minima as well as constructively to 
produce maxima. With electromagnetic waves, for example, it isn’t the intensities 
that interfere but rather the electromagnetic fields themselves. For electromagnetic 
waves the intensity is proportional to the square of the amplitude of the wave. With 
this in mind, for our Stem-Gerlach experiments we introduce a probability ampli­
tude that we will “square” to get the probability. If we don’t observe which path 
is taken in the modified SGx device b<y inserting a block, or filter, we must add the 
amplitudes to take the two different paths corresponding to the |+x) and |—x) states. 
Even a single particle can have an amplitude to be in both states, to take both paths; 
when we add, or superpose, the amplitudes, we obtain an amplitude for the particle 
to be in the state |+z) only.5 In summary, when we don’t make a measurement in 
the modified SG device, we must add the amplitudes, not the probabilities.

5 In Section 2.3 we will discuss in more detail how this interference in Experiment 4 works. 
These results are reminiscent of the famous double-slit experiment, in which it seems logical 
to suppose that the particles go through one slit or the other, but the interference pattern on a 
distant screen is completely incompatible with this simple hypothesis. The double-slit experiment 
is discussed briefly in Section 6.7. If you are unfamiliar with this experiment from the perspective 
of quantum mechanics, an excellent discussion is given in The Feynman Lectures on Physics, 
vol. 3. Chapter 1.
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1.3 The Quantum State Vector

In our description of the state of a particle in quantum mechanics, we have been 
using a new notation in which states, such as |+z), are denoted by abstract vectors 
called ket vectors. Such a description includes as much information about the state 
of the particle as we are permitted in quantum mechanics. For example, the ket |+x) 
is just a shorthand way of saying that the spin state of the particle is such that if we 
were to make a measurement of Sx, the intrinsic spin angular momentum in the x 
direction, we would obtain the value fi/2. There are clearly other attributes that are 
required to give a complete description of the particle, such as the particle’s position 
or momentum. However, for the time being we are concentrating on the spin degrees 
of freedom of the particle.6 Later, in Chapter 6, we will see how to introduce other 
degrees of freedom in the description of the state of the particle.

Classical physics uses a different type of vector in its description of nature. Some 
of these ordinary vectors are more abstract than others. For example, consider the 
electric field E, which is a useful but somewhat abstract vector. If there is an electric 
field present, we know that a test charge q placed in the field will experience a force 
F =  qE. Of course, even the force F will not be observed directly. We would probably 
allow the particle to be accelerated by the force, measure the acceleration, and then 
use Newton’s law F =  ma to determine F and thence E.

Let’s suppose the electric field in the location where you are reading this book has 
a constant value, which you could determine in the way we have just outlined. How 
do you tell your friends about the value, both magnitude and direction, of E? You 
might just point in the direction of E to show its direction. But what if your friends are 
not present and you want to write down E on a piece of paper? You would probably 
set up a coordinate system and choose basis vectors i, j, and k whose direction 
you could easily communicate. Using this coordinate system, you would denote the 
electric field as E =  Exi +  E vj  +  Ezk. In fact, we often use a shorthand notation 
in which we suppress the unit vectors and just say E =  (Ex, E v, Ez), although in 
the notation we will be using in our discussion of quantum mechanics, it would be 
better to denote this as E -> (Ex, Ev, Ez). How do we obtain the value for Ex, for 
example? We just project the electric field onto the x axis. Formally, we take the dot 
product to find Ex =  i • E =  |E| cos 6 , where 6 is the angle the electric field E makes 
with the x axis, as shown in Fig. 1.7.

Let’s return to our discussion of quantum state vectors. If we send a spin- ̂  particle 
into an SGz device, we obtain only the values h/ 2 and —h j2, corresponding to the

6 The historical development of quantum mechanics initially focused on the more obvious 
degrees of freedom, such as a particle’s position. In fact, Goudsmit was fond of relating how, 
when confronted with the need to introduce a new degree of freedom for the intrinsic spin of 
the electron in order to explain atomic spectra, he had to ask Uhlenbeck what was meant by the 
expression “degree of freedom.”
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Figure 1.7 The x  and y  components o f an electric field 
E making an angle 0 with the x  axis can be obtained by 
taking the dot product of E with the unit vectors i and j. 
For a classical vector such as E, Ex and £ y can also be 
obtained by projecting E onto the x  and y  axes.

particle ending up in the state |+z) or ending down in the state |—z), respectively. 
These two states can be considered as vectors that form a basis for our abstract 
quantum mechanical vector space. If the particle is initially in the state |+z), we 
have seen in Experiment 1 that there is zero amplitude for the particle to be found in 
the state |- z ) ,  which we denote by ( -z |+ z )  =  0. We can think of this as telling us 
that the vectors are orthogonal, the analogue of i • j  =  0 in our electric field example. 
Of course if we send a particle in the state | +z) into an SGz device, we always find the 
particle in the state |+z). In the language of quantum mechanical amplitudes this is 
clearly telling us that the amplitude (+z|+z) is nonzero. As we will see momentarily, 
it is convenient to require that our quantum mechanical vectors be unit vectors and 
therefore satisfy (+z|+z) =  1, just as i • i =  1. We similarly require that ( - z |- z )  =  1 
as well, just as j  • j  =  1.

Suppose the particle is in the state |+x). From Experiment 3 we know that the 
particle has nonzero amplitudes, which we can call c+ and c_, to be in the states 
|+z) and |—z), respectively. We can express this state as |+x) =  c+ |+z) +  c _ |-z ) , 
a linear combination of the states |+z) and |- z ) .  In fact, it is convenient at this 
stage to consider an arbitrary spin state |V0, which could be created by sending a 
beam of particles with intrinsic spin-^ through an SG device with its inhomogeneous 
magnetic field oriented in some arbitrary direction and selecting those particles that 
are deflected, for example, upward. In general, this state, like |+x), will have nonzero 
amplitudes to yield both h/2  and —h/2  if a measurement of Sz is made. Thus we 
will express this state |\j/) as

|* ) =  c+ |+z) +  c _ |-z )  (1.5)

where the particular values for c+ and c_ depend on the orientation of the SG device. 
That an arbitrary state |\j/) can be expressed as a superposition of the states |+z) and 
|-z )  means that these states form a complete set, just as the unit vectors i, j, and k 
form a complete set for expressing an electric field E in three dimensions. Although 
we are describing the states of spin angular momentum of a spin-^ particle in, of 
course, three dimensions, we need only the basis states |+z) and |—z) to span this 
two-dimensional vector space.
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How can we formally determine the values of c+ and c_? In order to take the 
analogue of the dot product in our ordinary classical vector example, we need 
to introduce a new type of vector called a bra vector.7 For every ket |\j/) there
corresponds a bra (VH- Thus we have two different ways to denote a state with
Sz =  h /2, with the ket |+z) and the bra (+z|. The fate of a bra such as (<p\ is to 
meet up with a ket \\j/) to form an amplitude, or inner product, {(p\^) in the form of 
a bracket—hence the name for bras and kets. The amplitude p\\j/) is the probability 
amplitude for a particle in the state \rj/) to be found in the state |<p). From our earlier 
experiments we know that (—z|+z) =  0, and similarly (+z|—z) =  0, since a particle 
in the state |-z ) , with Sz = —h f2, has zero amplitude to be found in the state |+z), 
with Sz = h/2. Thus from (1.5), we can deduce that

(+z|^r) =  c+(+z|+z) +  c_(+z|-z) =  c+ (1.6a)

( - z \ f )  = c+(-z|+z) +  c _ (-z |-z )  =  c_ (1.6b)

or simply c± = (±z|\j/). This enables us to express (1.5) in the form

W )  =  <+z|V0 l+z> + <-z|^> l-z) =  |+z)<+z|V0 + |-z)(-z |^>  (1.7)

where in the last step we have positioned the amplitudes after the kets in a suggestive 
way. Note that the amplitudes (+z|V0 and ( - z | \j/), the brackets, are (complex) 
numbers, and thus the product of an amplitude times a ket vector is itself just a 
ket vector. It really doesn’t matter whether we position the amplitude before or after 
the ket. Writing the ket vector |\j/) in the form (1.7) is analogous to expressing the 
electric field E in the form E =  Exi +  Evj +  Ezk =  i(i • E) +  j(j • E) +  k(k • E).

Since to each ket there corresponds a bra vector, we must be able to express (V̂ l 
in terms of (+z| and (—z| as

( f \  = c'+(+z\ + c'_(-z\ (1.8)

Using the same technique as before, we see that

(V'l+z) =c^_(+z|+z) +  c'_(-z|+z) =  c'+ (1.9a)

(V'l-z) =  c+(+z|-z) +  c'_(-z |-z) =  c_ (1.9b)

Thus the bra corresponding to the ket in (1.7) is

( f \  = (f\+z)(+ z\ + ( f \ - z ) ( - z \  (1.10)

7 Mathematicians call the linear vector space spanned by the bra vectors the dual space.



1.3 The Quantum State Vector | 13

How are the amplitudes (+z|V0 and (V'l+z) related? Just as we require that 
(+z|+z) =  1, we also require that (V'lVO =  1- We are demanding that all physical 
vectors in our abstract quantum mechanical vector space be unit vectors. As we will 
now see, this requirement is crucial to the probabilistic interpretation of quantum 
mechanics. If we use (1.7) and (1.10) to evaluate we find

( f \ f )  = ( f \+z) (+z\ f )  +  ( f \ - z ) ( - z \ f )  =  1 (1.11)

In Section 1.5 we will examine a final Stem-Gerlach experiment that will convince 
you that amplitudes such as (+z|VO and (—z\ijf) are in general complex numbers. 
The way to guarantee that equality (1.11) is satisfied for arbitrary \ijf)’s is to have

Wr|+z> =  (+z|*>* and <Vr|-z) =  <—z|V0* (1.12)

so that each of the terms in (1.11) is real. These results say that the amplitude for a 
particle in the state \ijf) to be found in the states |±z) is the complex conjugate of 
the amplitude for a particle in the states |±z) to be found in the state \rj/).

From (1.6) and (1.9), we see that c'+ = c* and c'_ = c*_. Therefore, the bra 
corresponding to the ket (1.5) is

( ^ |= < ( + z |+ c * _ ( - z |  (1.13)

The bra vector is generated from the ket vector by changing all the basis kets to 
their corresponding bras and by changing all amplitudes (complex numbers) to their 
complex conjugates.

With these results, we can express (1.11) as

< M ) = <+zivo*<+zi vo +  < - z w < - z i* >

= c*+c+ + c*_c_ = 1 (1.14)

or
f 5

<W > =  K +aW I2 +  K -z W I2 =  1 (1.15)

where |(+z|V^)|2 =  {+z\ij/)* (+z\ij/) and |(-z|V^)|2 =  (—z\iJ/)*(—z\\/r). We interpret 
|(+z|V0l2 as the probability that a particle in the state |\j/) will be found to be in 
the state |+z) if a measurement of Sz is made with an SGz device and |(-z |V 0l2 as 
the probability that the particle will be found in the state |—z). As (1.15) shows, the 
requirement that (V'lVO =  I guarantees that the probability of finding the particle in 
either one state or the other sums to one, since there are only two results possible 
for a measurement of Sz for a spin- j  particle.

The striking feature of (1.7) is that when both of the probability amplitudes 
(+z|V0 and (-z|V 0 are nonzero, then a particle in the state |\j/) is really in a 
superposition of the states |+z) and |—z). There are probabilities of obtaining both 
Sz = h/2  and Sz = —h/ 2 if a measurement of Sz is carried out. This is to be contrasted
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with classical mechanics, where for a particle in a definite state we do not expect 
measurements of, say, the orbital angular momentum of the particle at a particular 
time to yield two different values, such as i*i x pi and r2 x p2.

EXAMPLE 1.1 A measurement of Sz is carried out on a particle in the state

I VO =  j l + z )  +  ~ l - z >

What are the possible results of this measurement and with what probability 
do these results occur?

SOLUTION Since

<+*i*> =  ^

and consequently

|< + Z |* )|2 =  i
4

therefore there is a 25 percent probability of obtaining Sz = h/2. Similarly,

<-z|V0

and

K-zlV0l2 ¥  ¥H
therefore there is a 75 percent probability of obtaining Sz = -h /2 .  Since the 
state |V0 is appropriately “normalized,” namely

W * )  = l<+zl«l2 +  l(-*WI2 =  7 + 7 =  14 4

these probabilities must sum to one since the only results of a measurement 
of Sz for a spin-^ particle are h/2  and —h/2.

1.4 Analysis of Experiment 3

As we noted earlier, Experiment 3 is telling us that a particle in the state |+x) is in 
a superposition of the states |+z) and |- z )  : |+x) =  c+ |+z) +  c _ |-z ) , since when 
we make measurements of Sz with the last SGz device in the experiment, we have
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probabilities of obtaining both h/ 2  and - h / 2 .  Because the probabilities are each 
50 percent, we have

c*+c+ =  (+z|+x)*(+z|+x) =  |<+z|+x)|2 =  \  (1.16a)

c*_c_ =  (—z|+x)*(—z|+x) =  |( - z |+ x ) |2 =  2 (1.16b)

One solution is to choose c+ and c_ to be real, namely c+ = \/>j2 and c_ =  l/\/2 . 
The more general solution for c+ and c_ may be written as

c , =
eiS+
7 ?

and c_ = eiS-
(1.17)

where 8+ and 8_ are real phases that allow for the possibility that c+ and c_ are 
complex.8 The ket for the state with Sx =  h / 2  is then given by

eiS+ JS.
I+X) =  - = |+ z )  +  — |-z )  

V2 n/2
(1.18)

Notice that the probabilities (1.16) themselves do not give us any information about 
the values of the phases 8+ and 8_, since the phases cancel out when we calculate
c+c+ ancl c- c- :

c+c+

c c

(1.19a)

(1.19b)

We can use these probabilities to calculate the average value, or expectation 
value, of Sz, which is the sum of each value obtained by a measurement of Sz 
multiplied by the probability of obtaining that value:

>̂=cMf)+c-c-H)
In this particular case, the expectation value doesn’t coincide with any of the values 
that may be obtained by measuring Sz. An idealized set of data resulting from

8 A common way to express a complex number z is in the form z =  x +  iy, where x and 
y— the real and imaginary parts of z, respectively— give the location of z in the complex plane. 
Alternatively, we can express the coordinates for z in the complex plane using the magnitude r of 
the complex number and its phase <j>, where x =  r cos 0  and y =  r sin 0 . Then z =  re ,<t>> where we 
have taken advantage of the Euler identity e,<f> =  cos 0  +  /' sin 0 . The complex conjugate of the 
complex number z =  x +  iy =  re10 is obtained by replacing i by — /', that is z* =  x — iy =  re~'<t>. 
Therefore. z*z =  re~'<t>re'<i> =  =  r -_
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#

Figure 1.8 An idealized set o f data result­
ing from measurements o f S2 on a collection  

_fi/ 2  h/ 2  ^z o f particles with Sx =  h/2.

measurements of Sz on a very large collection of particles, each with Sx = h/2 , 
is shown in Fig. 1.8. Clearly, there is an inherent uncertainty in the result of the 
measurements, since the measurements do not all yield the same value. We calculate 
this uncertainty by computing the standard deviation: we determine the average 
value of the data, take each data point, subtract the average value from it, square 
and average, and finally take the square root. Thus the square of the uncertainty is 
given by

(AS,)2 =  ((5, — (Sz))2)
= (S2 -  2S2(S2) +  <S2)2)

=  <S2> -  2(Sz)(S2) +  <S2>2

=  (S2) - ( S Z)2 (1.21)

The expectation value (5^) is the sum of each value of 5^ multiplied by the proba­
bility of obtaining that value:

Therefore, substituting (1.20) and (1.22) into (1.21), we find ASZ = h/2  for a particle 
in the state |+ x ). We call A Sz the uncertainty rather than the standard deviation since 
a single particle in the state |+x) does not have a definite value for Sz.9

Of course, (Sz) =  0 is not in disagreement with finding a single particle to be 
spin up if we make a measurement of Sz on a particle in the state |+x). To test 
predictions such as (1.20) requires a statistically significant sample. Suppose we 
make measurements of Sz on 100 particles, each in the state |+x), and find 55 of 
them to be spin up (Sz =  h/2) and 45 of them to be spin down (Sz = -h /2 ) .  Should 
we be worried about a disagreement with the predictions of quantum mechanics?

9 The experimental evidence for this assertion will be discussed in Section 5.5.
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In general, if we make N measurements, we should expect fluctuations that are on 
the order of *J~N. Thus with 100 measurements, deviations from (Sz) =  0 on the 
order of 10 percent are reasonable. However, if we were to make 106  measurements 
and find 550,000 particles spin up and 450,000 particles spin down, we should be 
concerned, since we should expect fluctuations of only about a/N =  1 ,0 0 0 , rather 
than the measured 50,000.

EXAMPLE 1.2 As in Example 1.1, a spin-^ particle is in the state

1* )  =  j W  + ' - y - 1 -* )

What are the expectation value (Sz) and the uncertainty ASZ for this state? 

SOLUTION

(Sz) = K+zWl2 Q )  + K-zlV')l2

1 / f i \  3 /  h \  h 
=  4 \ 2 / " * " 4 \ 2 / = _ 4

and

(S]) = K+zlV')!2 + K-zlV')l2

_  1 /  h2 \  3 /  h2 \  _  h2
“ J v T / J v T / T

Consequently
f

a s z = J { S * ) - { sz)*

[h2 /  n \ 2 V3= J ------( —  ) =  — h = 0.43 hV 4 v 4 /  4

The uncertainty ASZ is 0.43h for the state |\J/), which is smaller than the 
value 0.50h for the state |+x), reflecting the fact that there is a 75 percent 
probability of obtaining h/2  if a measurement of Sz is carried out for the 
state | V0 as compared with 50 percent probability for the state |+x). Of 
course, if the state of the particle were |+z), then there would be a 1 0 0  

percent probability of obtaining fi/2 if a measurement of Sz is carried out. 
Correspondingly, ASZ vanishes in this case.
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1.5 Experiment 5

We are now ready to consider the final Stern-Gerlach experiment of this chapter. 
In this experiment. Experiment 5, we replace the last SGz device of Experiment 3 
with one that has its inhomogeneous magnetic field in the y direction and thus 
make measurements of Sy on particles exiting the SGx device in the state |+x). 
From Experiment 3 we already know the results of this final experiment. We must 
find 50 percent of the particles with Sv =  h/2  and 50 percent of the particles with 
Sy = —h/2. Figure 1.9 shows the last two Stern-Gerlach devices in Experiment 3 
and in Experiment 5. Although we are measuring Sv instead of Sz with the last SG 
device in Experiment 5, the percentage of the particles that go “up” and “down” must 
be the same for Experiment 3 and Experiment 5, since the axis that we called the z 
axis in Experiment 3 could just as easily have been called the y axis, either by us or 
by another observer viewing the experiment. In fact, this sort of argument tells us 
that if we were to replace the SGx device in Experiment 3 with an SGy device, we 
would still find that 50 percent of the particles have Sz = h/2 and 50 percent have 
Sz = — h/2 when exiting the last SGz device.

These simple results have important implications. Just as we are able to express 
the state |+x) by (1.18), we can express the state |+y) as a superposition of |+z) 
and |—z) in the form

e'Y+ eiy- eiy+ r n
l+y) = y | l +z) + y f l~ z>= U+z> + e'(Y~ y+l~z>J O-23)

where we have written the complex numbers multiplying the kets |+z) and |- z )  in 
such a way as to ensure that there is a 50 percent probability of obtaining Sz = h/2 
and a 50 percent probability of obtaining Sz = —h/2. Note that in the last step we 
pulled out in front an overall phase factor ely+ for future computational convenience. 
Moreover, since in Experiment 5 there is a 50 percent probability of finding a particle

No/2
/V  2

(a)

N()I2
N()/2

(b)

Figure 1.9 Block diagrams showing the last two SG 
devices in (a) Experiment 3 and in (b) Experiment 5.
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with Sy = h/2  when |t  exits the SGx device in the state |+x), we must have

|(+ y |+ x ) | 2  =  l  (1.24)

Now the bra corresponding to the ket (1.23) is

e - ‘ Y+ e ~‘ Y- e ~ iY+ r -i
<+y| = ^=-<+*1 + T /T (- z| = ~ w  [<+2l + «",<y- ' ,/+)(-*lJ 0-25)

where we have replaced the complex numbers in (1.23) with their complex conju­
gates in going from (1.23) to (1.25). If we rewrite (1.18) by pulling out an overall 
phase factor:

I+X) =  [|+z> +  (1.26)

then

<+y|+x> =  -----(<+z| +  e~iy(-z\^  (|+z> +

e i(S+ - y +) p
= -----------^l +  e '(i-)/)J (1.27)

where 8 = 8_ — 8+ and y = y_ — y+ are the relative phases between the kets 
|+z) and |- z )  for these two states, and we have used (+z|+z) =  ( - z |- z )  =  1  

and (+ z |-z )  =  (-z |+ z )  =  0 in evaluating the amplitude. We finally calculate the 
probability:

l(+y|+x)i2 =  { [l +  J |  ■■ '(<* ^  [l +  ’] J

=  - [ l  +cos(<5 -  y)] (1.28)

Agreement with (1.24) requires 8 -  y = ± n / 2. The common convention, which we 
will see in Chapter 3, is to take 8 =  0. If in (1.23) and (1.26) we ignore the overall 
phases 8+ and y+, which appear in the amplitude (1.27) but do not enter into the 
calculation of the probability (1.28), we see that
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Z

v

x X

(a) (b)

Figure 1.10 A state that is spin down along y  in 
the right-handed coordinate system shown in (a) is 
spin up along y  in the left-handed system shown 
in (b).

where we have chosen y =  7r / 2 . The choice y = —n/2  yields the state

—  |+z) -  - = |- z >  =  |-y ) (1.31)

The reason for this ambiguity is that in discussing our series of Stern-Gerlach 
experiments we have not specified whether our coordinate system is right handed 
or left handed. The state we have called |+y) is indeed the state with Sv =  h/2  in 
a right-handed coordinate system. The state we have called |—y) is the state with 
Sv = -h ,/2 in our right-handed coordinate system. Of course, this latter state, which 
is spin down along y, is spin up along y in a left-handed coordinate system, as shown 
in Fig. 1.10. That is why we see both solutions appearing. 1 0

These complications should not detract from the main message to be learned 
from Experiment 5. The simple fact is that (1.24) cannot be explained without a 
complex amplitude. The appearance of / ’s such as the one in (1.30) is one of the key 
ingredients of a description of nature by quantum mechanics. Whereas in classical 
physics we often use complex numbers as an aid to do calculations, there they are 
not essential. The straightforward Stern-Gerlach experiments we have outlined in 
this chapter demand complex numbers for their explanation.

EXAMPLE 1.3 A spin-^ particle is in the state

10 We will see how to derive all of the results of this section from first principles in Chapter 3.
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What is the probability that a measurement of Sv yields h /2? What is (Sv) 
for this state?

SOLUTION From ( 1.30), we know that

l+y) =  -7=l+z> +V2 V2

Thus the corresponding bra vector is

<+y| = -4=(+zl -
V2 V2

The probability amplitude for finding a particle in the state | \J/) with Sy = h/2 
if a measurement of Sv is carried out is given by

( + » i«  -  ( - = ( + .  i -  - = ( - . i )

Therefore the probability is given by

1 */3l(+y|^)l2 = -  + ^ -  = 0.93

To get a physical feel for what the spin state |\j/) is and why the probability 
of finding the particle in this state with Sy = h/ 2 is as large as 0.93, take a 
look at Problem 1.10.

Since a measurement of Sv yields either +h/2  or —h/2, the probability 
of obtaining Sv = —h/2 is given by

K-ylV')!2 = i -  l(+ylV')l2 =  -  -  ^  =0.07
V5

2 4

Therefore

£ ) (!)♦(!-=?)(-!)- 4

1.6 Summary

The world of quantum mechanics is both strange and wonderful, in part because it is 
a world filled with surprises that so often run counter to our classical expectations. 
Yet as we go on, we will see the remarkable insight quantum mechanics gives us
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not just into microscopic phenomena but into the laws of classical mechanics as 
well. Since quantum mechanics subsumes classical mechanics, we cannot “derive” 
quantum mechanics from our classical, macroscopic experiences. Our strategy in 
this chapter has been to take a number of Stern-Gerlach experiments as our guide 
into this strange world of quantum behavior. From these experiments we can see 
many of the general features of quantum mechanics.

A quantum state is specified either by a ket vector |\j/) or a corresponding bra 
vector ( f \ .  The complex numbers that we calculate in quantum mechanics result 
from a ket vector |\j/) meeting up with a bra vector {<p|, forming the bra(c)ket ((plrj/), 
which we call the probability amplitude for a particle in the state IVO to be found in 
the state \<p). The amplitude (V̂ l<p) for a particle in the state |<p) to be found in the 
state \\fr) is the complex conjugate of the amplitude for a particle in the state |\j/) to 
be found in the state \<p)\

w <p) = (<p d-32)

The probability of finding a particle to be in the state |<p) when a measurement is 
made on a particle in the state |\j/) is given by \ {(p\ty)\2. Notice that the probability is 
unchanged if the ket | \fr) is multiplied by an overall phase factor o'5 : | \j/) —> e,s\\fr).

Although we have phrased our discussion so far solely in terms of the intrinsic 
spin angular momentum of a spin-| particle, the structure that we see emerging has 
a broad level of applicability. Suppose that we are considering an observable A 
for which the results of a measurement take on the discrete values o b o2, o3, . . .  .n 
As we will see, angular momentum and energy are good examples of observables 
for which the results of measurements can be grouped in a discrete (although not 
necessarily finite) set. A general quantum state, expressed in the form of a ket vector 
|\fr), can be written as a superposition of the states |oi), |o2), |o3), . . .  that result if 
a measurement of A yields ax, a2, o3, . . . ,  respectively:

\ f )  = C\\a\) +  c2 |o2> +  c3 |o3> +  • • • =  c„\a„) (1.33)
n

The corresponding bra vector is given by

{\fr\ = c*(ai| +  c*{a2\ +  0 3 (0 3 ! +  • • • =  c*n(an\ (1-34)
n

The complex number

c„ =  (an\ f )  11 (1.35)

11 The extension to observables such as position and momentum where the values form a 
continuum is discussed in Chapter 6.
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is the amplitude to obtain an if a measurement of A is made for a particle in the 
state |VO- 1 2

Physically, we expect that

(fl/|fly) =  0 i ^ j  (1.36)

since if the particle is in a state for which the result of a measurement is aj, there is 
zero amplitude of obtaining a, with i ^  j .  The vectors |a,) and \aj) with i j  are 
said to be orthogonal. The amplitude to obtain a, for a particle in the state \at) is 
taken to be one, that is.

<fl/|fl/> =  1 0-37)

The vector |a;) is then said to be normalized. Equations (1.36) and (1.37) can be 
nicely summarized by

(ai \aj ) = 8 ij (1.38)

where is called the Kronecker delta defined by the relationship

0  i *
1 ; =

(1.39)

We say that the set of vectors |at) form an orthonormal set of basis vectors. 
Equation (1.33) shows how an arbitrary vector \ijf) can be expressed in terms of 
this basis set. Thus the vectors \at) form a complete set.

Amplitudes such as (1.35) can be projected out of the ket | \j/) by taking the inner 
product of the ket 1^ )  with the bra (a,.|:

{a-i I VO = ^ c n{ai\an)
n

=  £ cA ’ = c'- o -40)
n

Thus the ket (1.33) can be written

IVO =  \an)(anW) (1.41)
n

which is just a sum of ket vectors |a,-), each multiplied by the amplitude (fl/IVO-

12 In this chapter we have used the shorthand notation |S2 =  ± h /2 )  =  |± z), |5X =  ± h / 2) =  
|± x ), and so on. Thus (izIVO are the amplitudes to obtain Sz =  ± f i /2  for a spin-^ particle in the 
state IV/) if a measurement of 5. is made.
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Similarly, the amplitude c* can be projected out of the bra (VO by taking the inner 
product with ket \at)‘.

W M  =  £ < » ; >
n

= y ^  c*8 . = c* (1.42)/  v n tn t v /
n

The bra (1.34) can thus be written as

(VO = £  (V 'K XtfJ (1-43)
n

which is the sum of the bra vectors (fl,|, each multiplied by the amplitude (VOat). 
The normalization requirement

(VO VO =

for a physical state IVO leads to

1 =  (VOVO= ^ £ < ( « / l ^  ^ £ c , |a , >  

=  £ £ C*Cy<fl'K >
i j

= E E c’cA = E  ic'i2
' j

showing that the probabilities

k , | 2 =  Ik ,-1  VO I2

(1.44)

(1.45)

(1.46)

of obtaining the result a,• if a measurement of A is carried out sum to one. From these 
results it follows that the average value of the observable A for a particle in the state 
| VO is given by

<A> =  £ | c „ | 2 a„ (1.47)
n

since the average value (expectation value) is the sum of the values obtained by 
the measurements weighted by the probabilities of obtaining those values. The 
uncertainty is given by

AA = J ( ( A - ( A ) f - )  = J ( A 2) - ( A ) 2 (1.48)

where

M 2> =  £ k A ’ (1.49)
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Equations (1.47) ancj, (1.49) illustrate the importance of completeness, that is, that 
any state can be expressed as a superposition of basis vectors, as in (1.33). Without 
this completeness, we would not know how to calculate the results of measurements 
for the observable A for an arbitrary state.

One of the most striking features of the physical world is that if more than one 
of the c„ in (1.33) is nonzero, then there are amplitudes to obtain different a„ for a 
particle in a particular state \ ij/). How should we interpret this result: Is the ket (1.33) 
telling us that the particle spends time in each of the states \an), and the probability 
| (an | VO I2  is just a reflection of how much time it spends in that particular state? Does 
this specification of the state as a superposition just reflect our lack of knowledge 
of which state the particle is really in? Is this why we must deal with probabilities? 
The answer to these questions is an emphatic no. Rather, (1.33) is to be read as a 
true superposition of the individual states \an), for if we parametrize the complex 
amplitudes in the form

(a„W) = \(anm e ‘S" (1 50)

where \ (an\ijf)\ is the magnitude, or modulus, of the amplitude and 8n is the phase 
of the amplitude, the difference in phase (the relative phase) between the individual 
states in the superposition matters a great deal. As we have seen in our discussion 
of the spin-^ |+x) and |+y) kets, changing the relative phase between the kets |+z) 
and |—z) in such a superposition by n/2  changes a state with Sx = h/2  into one 
with Sy = h/2. Compare (1.29) and (1.30).1 3  Thus the values of the relative phases 
in (1.33) dramatically affect how the states “add up,” or how the amplitudes interfere 
with each other. Quantum mechanics is more than just a collection of probabilities. 
We live in a world in which the allowed states of a particle include superpositions of 
the states in which the particle possesses a definite attribute, such as the z component 
of the particle’s spin angular momentum, and thus by superposing such states we 
form states for which the particle does not have definite value at all for such an 
attribute. t

v»*

Problems

1 .1 . Determine the field gradient of a 50-cm-long Stem-Gerlach magnet that would 
produce a 1 -mm separation at the detector between spin-up and spin-down silver 
atoms that are emitted from an oven at T = 1500 K. Assume the detector (see 
Fig. 1.1) is located 50 cm from the magnet. Note: While the atoms in the oven have 
average kinetic energy 3kBT / 2 , the more energetic atoms strike the hole in the oven 
more frequently. Thus the emitted atoms have average kinetic energy 2kBT, where 13

13 This also shows that a spin-^ particle cannot have simultaneously a definite value for the x 
and v components o f its intrinsic spin angular momentum.
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x

v
Figure 1.11 The angles B and </> specifying the orientation of 
an SGn device.

kB is the Boltzmann constant. The magnetic dipole moment of the silver atom is due 
to the intrinsic spin of the single electron. Appendix F gives the numerical value of 
the Bohr magneton, eh/2mec, in a convenient form.

1 .2 . Show for a solid spherical ball of mass m rotating about an axis through its center 
with a charge q uniformly distributed on the surface of the ball that the magnetic 
moment fi is related to the angular momentum L by the relation

Reminder: The factor of c is a consequence of our using Gaussian units. If you work 
in SI units, just add the c in by hand to compare with this result.

1.3. In Problem 3.2 we will see that the state of a spin-^ particle that is spin up along 
the axis whose direction is specified by the unit vector

(a) Verify that the state |+n) reduces to the states |+x) and |+y) given in this 
chapter for the appropriate choice of the angles 0 and <j>.

(b) Suppose that a measurement of Sz is carried out on a particle in the state |+n). 
What is the probability that the measurement yields (i) h /2? (ii) —h i l l

(c) Determine the uncertainty ASZ of your measurements.

1.4. Repeat the calculations of Problem 1.3 (b) and (c) for measurements of Sx. 
Hint: Infer what the probability of obtaining —h/2  for Sx is from the probability of 
obtaining h/2.

(a) What is the amplitude to find a particle that is in the state |+n) (from Prob­
lem 1.3) with SY = h /2? What is the probability? Check your result by eval­
uating the probability for an appropriate choice of the angles 6 and <J>.

n =  sin 9 cos <f>[ +  sin 6 sin 0 j  +  cos 0 k

with 6 and <j> shown in Fig. 1.11, is given by

1.5.
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Figure 1.12 A Stem-Gerlach experiment with spin-^ particles.

(b) What is the amplitude to find a particle that is in the state |+y) with Sn = ft/21 
What is the probability?

1 .6 . Show that the state

6 6 
| - n )  =  sin - |+ z )  “  e'* cos - | —z)

satisfies (+ n |—n) = 0 , where the state |+n) is given in Problem 1.3. Verify that 
< -n |-n>  =  1 .

1.7. A beam of spin-^ particles is sent through a series of three Stem-Gerlach 
measuring devices, as illustrated in Fig. 1.12. The first SGz device transmits particles 
with Sz = ft/2 and filters out particles with Sz = —ft/2. The second device, an SGn 
device, transmits particles with S„ =  ft/2 and filters out particles with S„ =  -  ft/2, 
where the axis n makes an angle 6 in the x-z plane with respect to the z axis. 
Thus particles after passage through this SGn device are in the state |+n) given 
in Problem 1.3 with the angle 0  =  0. A last SGz device transmits particles with 
Sz = —ft/2 and filters out particles with Sz = ft/2.

(a) What fraction of the particles transmitted by the first SGz device will survive 
the third measurement?

(b) How must the angle 0 of the SGn device be oriented so as to maximize the 
number of particles that are transmitted by the final SGz device? What fraction 
of the particles survive the third measurement for this value of 01

(c) What fraction of the particles survive the last measurement if the SGn device 
is simply removed from the experiment?

1 .8 . The state of a spin-^ particle is given by

W = 7 II+Z)+/ I “Z>
What are (Sr) and ASz for this state? Suppose that an experiment is carried out on 
100 particles, each of which is in this state. Make up a reasonable set of data for Sz 
that could result from such an experiment. What if the measurements were carried 
out on 1,000 particles? What about 10,000?

1.9. Verify that ASV =  yj{S\) -  {Sx}2 = 0 for the state |+x).
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1 .1 0 . The state

I VO =  ^l+z) +  y ^ l - z >

is a state withS„ = h/2  along a particular axis n. Compare the state IVO with the state 
|+n) in Problem 1.3 to find n. Determine (Sx), (Sy), and (Sz) for this state. Note: 
{Sz) and {Sy) for this state are given in Example 1.2 and Example 1.3, respectively.

1 .1 1 . Calculate {Sx), (Sv), and (Sz) for the state

I VO =  - - |+ z >  +  y l - z>

Compare your results with those from Problem 1.10. What can you conclude about 
these two states?

1 .1 2 . The state

■
I VO =  - l+ z )  +  y  l-z>

is similar to the one given in Problem 1.10. It is just “missing” the i. By comparing 
the state with the state |+n) given in Problem 1.3, determine along which direction 
n the state is spin up. Calculate (Sx), {Sy), and (Sz) for the state | VO- Compare your 
results with those of Problem 1.10.

1.13. Show that neither the probability of obtaining the result a, nor the expectation
value (A) is affected by |VO e‘S\V0> that is, by an overall phase change for the
state |VO-

1.14. It is known that there is a 36% probability of obtaining Sz = h/2  and therefore 
a 64% chance of obtaining Sz = - h /2  if a measurement of Sz is carried out on a 
spin- j  particle. In addition, it is known that the probability of finding the particle 
with Sx = h /2, that is in the state |+x), is 50%. Determine the state of the particle 
as completely as possible from this information.

1.15. It is known that there is a 90% probability of obtaining Sz = h/ 2 if a measure­
ment of Sz is carried out on a spin-^ particle. In addition, it is known that there is a 
20% probability of obtaining Sy = h/2  if a measurement of Sy is carried out. Deter­
mine the spin state of the particle as completely as possible from this information. 
What is the probability of obtaining Sx = h/2 if a measurement of Sx is carried out?



CHAPTER 2

Rotation of Basis States 
and Matrix Mechanics

4

In this chapter we will see that transforming a vector into a different vector in our 
quantum mechanical vector space requires an operator. We will also introduce a con­
venient shorthand notation in which we represent ket vectors by column vectors, bra 
vectors by row vectors, and operators by matrices. Our discussion will be primarily 
phrased in terms of the two-state spin-| system introduced in Chapter 1, but we will 
also analyze another two-state system, the polarization of the electromagnetic field.

2.1 The Beginnings of Matrix Mechanics

REPRESENTING KETS AND BRAS

We have seen that we can express an arbitrary spin state |V0 of a spin-^ particle as

I VO =  |+z)(+z|V 0  +  |frz)(-z|V 0  = c +|+z> + c _ |-z >  (2 .1 )

Such a spin state may, for example, be created by sending spin-| particles through 
a Stem-Gerlach device with its magnetic field gradient oriented in some arbitrary 
direction. The complex numbers c± =  (±z|V0 tell us how our state | VO is oriented 
in our quantum mechanical vector space, that is, how much of | VO is projected onto 
each of the states |+z) and |—z).

One convenient way of representing | VO is just to keep track of these complex 
numbers. Just as we can avoid unit vectors in writing the classical electric field

(2 .2 a)

(2 .2 b)

29

by using the notation

E =  Exi +  E .j +  Ez k
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we can represent the ket (2 . 1 ) by the column vector

<+z| VO
W)

Sz basis \  ( — Z | \J /)

In this basis, the ket |+z) is represented by the column vector

l+z)— > ( <+2|+z)W ' )
S: basis \  (—Z|+Z) /  \  0 /

and the ket |—z) is represented by the column vector

(+z|-z>
I z) ■S'-basis \  ( —Z|—Z) ) - C )

(2.3)

(2.4)

(2.5)

although the label under the arrow is really superfluous in (2.4) and (2.5) given the 
form of the column vectors on the right. Using (1.29), we can also write, for example,

|+ x >-------  \  . / l \
5, basis \  (-Z|+X) /  y / 2  \  1 /

( 2.6)

How do we represent bra vectors? We know that the bra vector corresponding to 
the ket vector (2 . 1 ) is

( f \  =  (Vr|+z)(+z| +  (\ff\ z) ( z| =  C+(+z| +  C*_{ z| 

We can express

(2.7)

( f \ f )  =  (V'l+zX+zIVO +  (V ^l-z)(-z |^ ) =  1 (2 .8 )

conveniently as

/  (+z|V^) \
m * )  =  «1M+Z>, (V^l-z)) ( , # 1 =  1 (2.9)

------------*-----------' V { - iW )  /bra vector v v ——
ket vector

where we are using the usual rules of matrix multiplication for row and column 
vectors. This suggests that we represent the bra (V/| by the row vector

m ------- > (( f \+ z ) , ( f \ - z ) )  (2 . 1 0 )
Sz basis

Since (VM+z) =  (+z|V^)* and (\j/1—z) =  (—z | (2.10) can also be expressed as 

W ------- ► ((+Z|^r)*, { - Z\ \ j / ) *)  =  (C* c*_) (2.11)
Sz basis

Comparing (2.11) with (2.3), we see that the row vector that represen ts the bra 
is the complex conjugate and transpose of the column vector that rep resen ts the 
corresponding ket. In this representation, an inner product such as (2.9) is carried 
out using the usual rules of matrix multiplication.
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As an example, Ve may determine the representation for the ket |—x) in the Sz 
basis. We know from the Stem-Gerlach experiments that there is zero amplitude 
to obtain Sx = —h/2  for a state with Sx = h/2, that is, (—x|+x) =  0. Making the 
amplitude (—x|+x) vanish requires that

eiS (  1 \
l - x ) -- ► - = (  J  (2 . 1 2 )

Sz basis y j 2  \  — 1 /

since then

e~iS 1 /  1 \
< - « , + « > ( 2 , 3 )

Note that the \/y/2 in front of the column vector in (2.12) has been chosen so that 
the ket |—x) is properly normalized:

-is is /  i \
( _ , )  =  , (2 ,4 )

The common convention, and the one that we will generally follow, is to choose the 
overall phase 8 = 0  so that

| - x ) --- (215)
S- basis y j 2  V  — 1 /

However, in Section 2.5 we will see that an interesting case can be made forehoosing
8 =  71.

As another example, (1.30) indicates that the state with Sv =  h/2  is

'+y) = T i ' +z) + i i ' ~ z)
f •

which may be represented in the S2  "basis by

l+y)
V 2

(2.16)

(2.17a)

The bra corresponding to this ket is represented in the same basis by

(+yl -p( l ,  - o  
■Ji

(2 ,7b)

Note the appearance of the — i in this representation for the bra vector. Using these 
representations, we can check that

<+ y i+y) =  - l ( i , - o - J l
(2 ,8 )
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If we had used the row vector

- U  + o
■Ji

in evaluating the inner product, we would have obtained zero instead of one. Since 
(—y|+y) =  0, this tells us that in the Sz basis

and thus

(2.19a)

(2.19b)

Putting these pieces together, we can use these matrix representations to calculate 
the probability that a spin-| particle with Sx = h/2  is found to have Sv =  h/2 when 
a measurement is carried out:

|(+y|+x)|2 = 2 = o . -< ) 2 =
■Jl -Jl

2

I - /  2 =  ( l - f ) ( l  +  l) 
2 2 2 2

(2.20)

EXAMPLE 2.1 Use matrix mechanics to determine the probability that a 
measurement of Sv yields h/2  for a spin-| particle in the state

I VO =  j l+ z )  +  ^ p l “ z>

SOLUTION

K+ylVOI = -— a  - o x-y/2 2 ,>3)
1

2 V 2

(1 +  V3)
\ /A „ /- 1 V3

=  -(4  +  2V3 = -  +  —  
8  2 4

Compare this relatively compact derivation with the use of kets and bras in 
Example 1.3.

FREEDOM OF REPRESENTATION
It is often convenient to use a number of different basis sets to express a particular 
state | VO- Just as we can write the electric field in a particular coordinate system as
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(2 .2 ), we could use |  different coordinate system with unit vectors i', j', and k' to 
write the same electric field as

E =  ExX  +  Eyij ' +  Ez>k' (2.21a)

or

E (Exi, Ey>, Ez>) (2.2lb)

Of course, the electric field E hasn’t changed. It still has the same magnitude and 
direction, but we have chosen a different set of unit vectors, or basis vectors, to 
express it. Similarly, we can take the quantum state IVO in (2.1) and write it in terms 
of the basis states |+x) and |—x) as

\ f )  = 1+xX+xlVO +  I—x>(—x|V0  (2 .2 2 )

which expresses the state as a superposition of the states with Sx = ±ti/2  multiplied 
by the amplitudes for the particle to be found in these states. We can then construct 
a column vector representing \ijf) in this basis using these amplitudes:

W) — ►
Sx  basis

(+XIV0  \  

<-x|*>/
(2.23)

Thus the column vector representing the ket |+x) is

which is to be compared with the column vector (2.6). The ket |+x) is the same state 
in the two cases; we have just written it out using the Sz basis in the first case and the 
Sx basis in the second case. Which basis we use is determined by what is convenient, 
such as what measurements we are going to perform on the state |+x).

t.
2.2 Rotation Operators

There is a nice physical way to transform the kets themselves from one basis set 
to another. 1 Recall that within classical physics a magnetic moment placed in a 
uniform magnetic field precesses about the direction of the field. When we discuss 
time evolution in Chapter 4, we will see that the interaction of the magnetic moment 
of a spin-^ particle with the magnetic field also causes the quantum spin state of the 
particle to rotate about the direction of the field as time progresses. In particular, if

1 You may object to calling anything dealing directly with kets physical since ket vectors are 
abstract vectors specifying the quantum state of the system and involve, as we have seen, complex 
numbers.
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the magnetic field points in the y direction and the particle is initially in the state 
|+z), the spin will rotate in the x-z plane. At some later time the particle will be 
in the state |+x). With this example in mind, it is useful at this stage to introduce a 
rotation operator R(yj) that acts on the ket |+z), a state that is spin up along the 
z axis, and transforms it into the ket |+x), a state that is spin up along the x axis:

|+x) =  fi(fj)|+z>  (2.25)

Changing or transforming a ket in our vector space into a different ket requires an 
operator. To distinguish operators from ordinary numbers, we denote all operators 
with a hat.

What is the nature of the transformation effected by the operator fl(y j)?  This 
operator just rotates the ket |+z) by n/2  radians, or 90°, about the y axis (indicated 
by the unit vector j) in a counterclockwise direction as viewed from the positive 
y axis, turning, or rotating, it into the ket |+x), as indicated in Fig. 2.1a. The same 
rotation operator should rotate |—z) into |—x). In fact, since the most general state 
of a spin- 1  particle may be expressed in the form of (2 . 1 ), the operator rotates this 
ket as well:

K ( f  j)IV^) =  K ( f j )  (c+ l+Z) +  c_ |-z>)

=  C+R{\j)|+z> +  c _ f i( f  j ) |—z>

=  c+1 +x) +  c_ | -x )  (2.26)

Note that the operator acts on kets, not on the complex numbers. 2  

THE ADJOINT OPERATOR

What is the bra equation corresponding to the ket equation (2.25)? You may be 
tempted to guess that (+x| =  (+z| (yj), but we can quickly see that this cannot be 
correct, for if it were, we could calculate3

(+x|+x> =  [<+ z |tf ( f j) ]  [ t f ( f j ) |+ z>] =  (+ z |f l(f j)fl(fj) |+ z>

We know that (+x|+x) =  1, but since /?(yj) rotates by 90° around the y axis, 
^ ( f  j ) ^ ( f  j) =  performs a rotation of 180° about the y axis. But as indicated

2 An operator A satisfying

A(a\\!r) +b\<p)) =  aA\\l/) +  bA\<p)

where a and b are complex numbers, is referred to as a linear operator.
3 You can see why we position the operator to the right of the bra vector when we go to calculate 

an amplitude. Otherwise we would evaluate the inner product and the operator would be left alone 
with no vector to act on.
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Figure 2.1 Rotating |+ z ) counterclockwise about the y  axis 
(a) by n / 2  radians transforms the state into |+ x )  and (b) by 
n  radians transforms the state into |— z). The spin state o f  a 
spin-^ particle with a magnetic moment would rotate in the 
x -z  plane if the particle were placed in a magnetic field in the 
y  direction.

in Fig. 2.1b, /?(7rj)|+z) =  |—z), and since (+z\R(n})\+z) =  (+z|—z) =  0, we are 
left with a contradiction.

For the ket vector |\j/) =  c+|+z) +  c_ |—z), the corresponding bra vector is 
( f  \ = c * (+ z | +  c* (—z|, with the complex numbers in the ket turning into their 
complex conjugates in the bra. Since we are dealing here with operators and not 
just complex numbers, we need an additional rule for determining the bra equation 
corresponding to a ket equation like (2.25) that involves an operator. We introduce 
a new operator called the adjoint operator of the operator R , so that the bra 
equation corresponding to (2.25) is

<+x| =  (+z|Rt( f  j) (2.27)

We can then satisfy

1 =  <+x|+x> =  (+zjtf+( f  j)fl(f  j)|+z> =  <+z|+z> (2.28)

if the adjoint operator Rf is inverse of the operator R. In particular, the adjoint 
operator /^ (y j)  is a rotation operator that can be viewed as operating to the right on 
the ket R(§j)|+z). If fl(y j) rotates by 90° counterclockwise, then ^ (§ j)  rotates 
by 90° clockwise so that fl+(f j ) f l ( f  j) =  1, and we are left with (+z|+z) =  l . 4

In general, an operator U satisfying U W  = 1 is called a unitary operator. 
Thus the rotation operator must be unitary in order that the amplitude for a state 
to be itself—that is, so that (V'lVO =  1—doesn’t change under rotation. Otherwise, 
probability would not be conserved under rotation.

4 As this example illustrates, the adjoint operator can act to the right on ket vectors as well to 
the left on bra vectors.
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(a) (b)

Figure 2.2 (a) Rotating |+ x ) by n / 2  radians coun­
terclockwise about the z axis transforms the state into 
|+ y ) . (b) Rotation o f a state by an infinitesimal angle 
d<f> about the z axis.

THE GENERATOR OF ROTATIONS
Instead of performing rotations about the y axis, let’s rotate about the z axis. If we 
rotate by 90° counterclockwise about the z axis, we will, for example, turn |+x) into 
|+y), as indicated in Fig. 2.2a. Instead of carrying out this whole rotation initially, 
let us first focus on an infinitesimal rotation by an angle d(j> about the z axis, as 
shown in Fig. 2.2b. A useful way to express this infinitesimal rotation operator is in 
the form

R(d<l>k) = \ - - J z d<f> (2.29)
ft

where we have introduced an operator Jz that “generates” rotations about the z axis 
and moves us away from the identity element. Our form for R(d(j>k) clearly satisfies 
the requirement that R(d<f>k) -> 1 as d<j> -> 0. As we will see, the factor of i and 
the factor of ft have been introduced to bring out the physical significance of the 
operator Jz. In particular, because the factor of ft occurs in the denominator of 
the second term in (2.29), the operator Jz must have the dimensions of ft, namely, 
the dimensions of angular momentum. We will see that a convincing case can be 
made that we should identify this operator Jz, the generator of rotations about the 
z axis, with the z component of the intrinsic spin angular momentum of the particle.

We first establish that Jz belongs to a special class of operators known as Hermi- 
tian operators. Physically, the operator R*(d(f>k) is the inverse of the rotation operator 
R(d<f>k). By taking the adjoint of (2.29), we can write this operator in the form

^ k )  =  l +  - i zf ^  (2.30)
ft

where y + is the adjoint of the operator Jz. Note that since the bra corresponding to the 
ket c| VO is W\c*, complex numbers get replaced by their complex conjugates when
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forming the adjoint^perator. Thus i -> — / in going from (2.29) to (2.30), which 
has the same effect as changing d<j> to —d(j>, and therefore R\d(f>k) =  R(—d<f>k), 
provided J* = Jz. More formally, since the rotation operator R*(d(f>k) is the inverse 
of the rotation operator R(d<f>k), these operators must satisfy the condition

R'(d<l>k)R(d<l>k )  =  ( l  +  - J j  dtp 'j ( l  -  ) z dtp 'j

= J^d<t> + 0 (d<l>2) = \  (2.31)

Since the angle d<j> is infinitesimal, we can neglect the second-order terms in d<j> and
(2.31) will be satisfied only if Jz = J*. In general, an operator that is equal to its 
adjoint is called self-adjoint, or Hermitian. Thus Jz must be a Hermitian operator. 
Hermitian operators have a number of nice properties that permit them to play major 
roles in quantum mechanics. After some specific examples, we will discuss some of 
these general properties in Section 2.8 . 5

One of the reasons that infinitesimal rotations are useful is that once we know 
how to perform an infinitesimal rotation about the z axis by an angle d(f>, we can 
carry out a rotation by any finite angle 0  by compounding an infinite number of 
infinitesimal rotations with

d(f> = lim —
N-*oo /V

The rotation operator R(<f>k) is then given by

R(d>k) =  limN -̂oo
(2.32)

The last identity in (2.32) can be established by expanding both sides in a Taylor 
series and showing that they agree term by term (see Problem 2.1). In fact, a 
series expansion is really the only way to make sense of an expression such as an 
exponential of an operator.

EIGENSTATES AND EIGENVALUES
What happens to a ket |+z) if we rotate it about the z axis—that is, what is 
R(<f>k)|+z)? If you were to rotate a classical spinning top about its axis of rota­
tion, it would still be in the same state with its angular momentum pointing in the 
same direction. Similarly, rotating a state of a spin-| particle that is spin up along 
z about the z axis should still yield a state that is spin up along z , as illustrated in

5 Now you can see one reason for introducing the i in the defining relation (2.29) for an 
infinitesimal rotation operator. Without it, the generator J. would not have turned out to be 
Hermitian.
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z z

(a) (b)

Figure 2.3 (a) Rotating |+ z ) by angle 0  about the 
z axis with the operator /?(</>k) does not change the 
state, in contrast to the action o f  the operator fl(0j), 
which rotates |+ z ) by angle 0 about the y  axis, 
producing a different state, as indicated in (b).

Fig. 2.3. In Chapter 1 we saw that the overall phase of a state does not enter into the 
calculation of probabilities, such as in (1.24). This turns out to be quite a general 
feature: two states that differ only by an overall phase are really the same state. We 
will now show that in order for R(<f>k)|+z) to differ from |+z) only by an overall 
phase, it is necessary that

Jz\+z) =  (constant) |+z) (2.33)

In general, when an operator acting on a state yields a constant times the state, we call 
the state an eigenstate of the operator and the constant the corresponding eigenvalue.

First we will establish the eigenstate condition (2.33). If we expand the exponen­
tial in the rotation operator (2.32) in a Taylor series, we have

fl(0k)|+z> = 1 _  . 1
n 2 !

I+Z) (2.34)

If (2.33) is not satisfied and Jz |+z) is something other than a constant times |+z), 
such as |+x), the first two terms in the series will yield |+z) plus a term involving 
|+x), which would mean that R (0k) |+z) differs from |+z) by other than a mul­
tiplicative constant. Note that other terms in the series cannot cancel this unwanted 
|+x) term, since each term involving a different power of 0  is linearly independent 
from the rest. Thus we deduce that the ket |+z) must be an eigenstate, or eigenket, 
of the operator Jz.

Let’s now turn our attention to the value of the constant, the eigenvalue, in (2.33). 
We will give a self-consistency argument to show that we will have agreement with
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the analysis of the St^m-Gerlach experiments in Chapter 1 provided

h  |± 2 ) =  ± 4 ± 2 )  (2.35)

This equation asserts that the eigenvalues for the spin-up and spin-down states are the 
values of Sz that these states are observed to have in the Stem-Gerlach experiments. 6  

First consider the spin-up state. If

JI \+z) = ^\+z)  (2.36a)

then
'y

jj \+ z) = j \^ \+ z)  = ^ l j + z )  = ^ J  1+2) (2.36b)

and so on. From (2.34), we obtain

R(<t> k)|+z> = \+z) = e~i<f,/2\+z) (2.37)

The state has picked up an overall phase, just as we would hope if the state is not to 
change. The value of the phase is determined by the eigenvalue in (2.36a).

In order to see why the eigenvalue should be h /2, let’s consider what happens if 
we rotate a spin-down state |-z )  about the z axis, that is, if we evaluate R(<f>k)| -z). 
Just as before, we can argue that |—z) must be an eigenstate of Jz. We can also argue 
that the eigenvalue for |-z )  must be different from that for |+z). After all, if the 
eigenvalues were the same, applying the rotation operator R(<f>k) to the state

l+x) =  ~  |+z) +  - U - z )  
V2 v2

(2.38)

would not rotate the state, since |+z) and |- z )  would each pick up the same phase 
factor, and the state in (2.38) wouldStself pick up just an overall phase. Therefore, 
it would still be the same state. But if we rotate the state |+x) by an angle 0  in the 
x-y plane, we expect the state to change. If we try

l \ - z )  =  4 - 1 ) (2.39)

for the eigenvalue equation for the spin-down state, we find

R(<t> k)|-z> -z )  =  e,<t>f2\-z) (2.40)

6 You can start to see why we introduced a factor of \ /h  in the defining relation (2.29) between 
the infinitesimal rotation operator and the generator of rotations.
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Using (2.37) and (2.40), we see that

H<t> k)|+x> =
e - W 2
~ 7 T

l+z> +
e^<2
~7T

- Z )

=  e~i<t>/2 1 el<t> \
T 2 '+I) + T 2 ' - Z))

(2.41)

which is clearly a different state from (2.38) for </> ^  0. In particular, with the choice 
(j> = n / 2 , we obtain

l-z )^

where we have replaced the term in the brackets by the state |+y) that we determined 
in (1.30). Since two states that differ only by an overall phase are the same state, 
we see that rotating the state |+x) by 90° counterclockwise about the z axis does 
generate the state |+y) when (2.35) holds. Thus we are led to a striking conclusion: 
When the operator that generates rotations about the z axis acts on the spin-up-along- 
z and spin-down-along-z states, it throws out a constant (the eigenvalue) times the 
state (the eigenstate); the eigenvalues for the two states are just the values of the z 
component of the intrinsic spin angular momentum that characterize these states.

Finally, let us note something really perplexing about the effects of rotations on 
spin-^ particles: namely.

>J =  e~i7t/4\+y) (2.42)

J?(*k)|+x> =  * l+z> +
r/2

/?(27rk)|+z) = e ,7r|+z) =  - |+ z )  (2.43a)

and

/?(27rk)|+z) = e in\-z )  = - |-z >  (2.43b)

Thus, if we rotate a spin-^ state by 360° and end up right where we started, we 
find that the state picks up an overall minus sign. Earlier we remarked that we could 
actually perform these rotations on our spin systems by inserting them in a magnetic 
field. When we come to time evolution in Chapter 4, we will see how this strange 
prediction (2.43) for spin-^ particles may be verified experimentally.

EXAMPLE 2.2 Show that rotating the spin-up-along-jc state |+x) by 180'
about the z axis yields the spin-down-along-jc state.
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SOLUTION

/?0rk)|+x) =  /?(7rk) ( -J=|+z> +  ~j=

- in / I 7i n / l

t t m + v r ' “ z>

= e-i*/2 / 1 e1"
7 I I+Z>+v! 1

= ^ / 2 ( J _ | +z) _ J _ l

= e- ‘*n-\-
■Ji

x>

V 2

l-z>)
-z)

- z )

)
)

where in the last line we have used the phase convention for the state | -x )  
given in (2.15).

2.3 The Identity and Projection Operators

In general, the operator R(0n) changes a ket into a different ket by rotating it by 
an angle 0 around the axis specified by the unit vector n. Most operators tend to do 
something when they act on ket vectors, but it is convenient to introduce an operator 
that acts on a ket vector and does nothing: the identity operator. Surprisingly, we 
will see that this operator is a powerful operator that will be very useful to us.

We have expressed the spin state |\fr) of a spin-| particle in the Sz basis as 
\\fr) =  \+z)(+z\\fr) +  |-z )(-z |V 0 . Wecan think of the rather strange-looking object

|+z)(+z| +  |- z ) ( - z |  (2.44)
* ..1.*’

as the identity operator. It is an operator because when it is applied to a ket, it yields 
another ket. Moreover, if we apply it to the ket \ijf), we obtain

(|+z)(+ z| +  |-z><-z|)|VO =  |+Z)<+z|^r) +  I—zX-zlV') =  \ f )  (2.45)

We earlier discussed a nice physical mechanism for inserting such an identity 
operator when we analyzed the effect of introducing a modified Stem-Gerlach 
device in Experiment 4 in Chapter 1. Here, since we are expressing an arbitrary 
state |V̂ ) in terms of the amplitudes to be in the states |+z) and |- z ) ,  we use a 
modified SG device with its magnetic field gradient oriented along the z direction, 
as shown in Fig. 2.4a. The important point that we made in our discussion of the 
modified SG device was that because we do not make a measurement with such a 
device, the amplitudes to be in the states |+z) and |—z) combine together to yield
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s '-w  'V

N N

(a)

(b)

Figure 2.4 (a) A modified Stem-Gerlach device serves as the identity 
operator, (b) Blocking the path that a spin-down particle follows produces the 
projection operator P+ . (c) Blocking the path that a spin-up particle follows 
produces the projection operator P_.

the same state exiting as entering the device, just as if the device were absent. Hence, 
it is indeed an identity operator.

The identity operator (2.44) may be viewed as being composed of two operators 
called projection operators:

p+ = |+z)<+z| (2.46a)

and

P_ = |—z) (—z| (2.46b)

They are called projection operators because

K  |V/) =  l+z)<+z|^) (2.47a)

projects out the component of the ket |V0  along |+z) and
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< P-W) = \ - z ) ( - z W )  (2.47b)

projects out the component of the ket |\Jr) along |-z ) .7 That (2.44) is the identity 
operator may be expressed in terms of the projection operators as

P+ + P_=  1 (2.48)

This relation is often referred to as a completeness relation. Projecting onto the 
two vectors corresponding to spin up and spin down are the only possibilities for a 
spin-^ particle. As (2.45) shows, (2.48) is equivalent to saying that an arbitrary state 
\ij/) can be expressed as a superposition of the two basis states |+z) and |-z ).

Notice that if we apply the projection operator P+ to the basis states |+z) and 
|-z ), we obtain

p+l+z) =  |+z)(+z|+z) =  |+z) (2.49a)

and

P+ | -z)  =  |+ z)(+z|-z) =  0 (2.49b)

Thus |+z) is an eigenstate of the projection operator P+ with eigenvalue 1, and 
|—z) is an eigenstate of the projection operator P+ with eigenvalue 0. We can obtain 
a physical realization of the projection operator P+ from the modified SG device 
by blocking the path that would be taken by a particle in the state |-z ), that is, by 
blocking the lower path, as shown in Fig. 2.4b. Each particle in the state |+z) entering 
the device exits the device. We can then say we have obtained the eigenvalue 1. Since 
none of the particles in the state | -z )  that enters the device also exits the device, we 
can say we have obtained the eigenvalue 0  in this case.

Similarly, we can create a physical realization of the projection operator P_ by 
blocking the upper path in the modified SG device, as shown in Fig. 2.4c. Then each 
particle in the state | —z) that enters'-fhe device also exits the device:

p-  l-z )  =  I -z> <-z| - z )  =  | - z )  (2.50a)

while none of the particles in the state |+z) exits the device:

P -l+ z) =  | —z) (—z|+z) =  0 (2.50b)

Hence the eigenvalues of P_ are 1 and 0 for the states |- z )  and |+z), respectively.

7 Notice that the projection operator may be applied to a bra vector as well:

{f\ P+ = W\+z)(+z\ W\ P- = {f\-z){-z\
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Figure 2.5 Physical realizations o f (a) P^ =  P+ and (b) P_ P+ =  0.

Notice that each of the particles that has traversed one of the projection devices 
is certain to pass through a subsequent projection device of the same type:

f*l = ( |+ z)(+ z |)d+ z)(+ z |)

=  |+z) (+z|+z) (+z| =  |+ z)(+ z| =  P+ (2.51a)

/ ^ ( I - zX - zIX I-zX - zI)

=  |-z )< -z |-z > < -z | =  1- z X -z l  =  P_ (2.51b)

while a particle that passes a first projection device will surely fail to pass a subse­
quent projection device of the opposite type:

/>+/>_ =  ( |+ z> (+ z |)(|-z> (-z |)

=  |+ z )(+ z |—z)(—z| = 0 (2.52a)

P _ P + =  ( | - Z ) ( - Z | ) ( | + Z ) ( + Z | )

=  1 —z)(—z|+ z)(+z | = 0 (2.52b)

These results are illustrated in Fig. 2.5.
Our discussion of the identity operator and the projection operators has arbitrarily 

been phrased in terms of the Sz basis. We could as easily have expressed the same 
state |\j/) in terms of the Sx basis as |\j/) =  |+x)(+x|V^) +  |-x)(-x |V ^). Thus we 
can also express the identity operator as

|+x)(+x | +  I—x><—x| =  1 (2.53)

and view it as being composed of projection operators onto the states |+x) and |-x ) .
Let’s use this formalism to reexamine Experiment 4 of Chapter 1. In this exper­

iment a particle in the state |+z) passes through a modified SGx device and then
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enters an SGz deviate. Since the modified SGx device acts as an identity operator, 
the particle entering the last SGz device is still in the state |+z) and thus the ampli­
tude to find the particle in the state |- z )  vanishes: ( -z |+ z )  =  0. There is, however, 
another way to express this amplitude. We use the identity operator (2.53) to express 
the initial ket in terms of the amplitudes to be the states |+x) and |-x ) :

|+z) =  |+ x)(+ x |+ z) +  I—x)(—x|+z) (2.54)

Then we have

(—z|+z) =  ( -z |+ x )(+ x |+ z)  +  (—z| — x) (—x|+z) (2.55)

Thus the amplitude for a particle with Sz = h/2 to have Sz = —h/ 2 has now been 
written as the sum of two amplitudes. We read each of these amplitudes from right 
to left. The first amplitude on the right-hand side is the amplitude for a particle with 
Sz = h/2  to have Sx = h/2  times the amplitude for a particle with Sx = h/2 to have 
Sz = —h/2. The second amplitude is the amplitude for a particle with Sz = h/2 
to have Sx = —h/2  times the amplitude for a particle with Sx = - h /2  to have 
Sz = — h/2. Notice that we multiply the individual amplitudes together and then add 
the resulting two amplitudes with the |+x) and |—x) intermediate states together to 
determine the total amplitude.

We now calculate the probability:

|( - z |+ z ) | 2  =  |( - z |+ x ) | 2 |(+ x |+ z ) | 2  +  | ( - z | - x ) | 2 | ( - x |+ z ) | 2

+  ( -z |+ x )(+ x |+ z )( -z |-x )* (-x |+ z )*

+  ( -z |+ x )* (+ x |+ z )* (-z |-x )( -x |+ z )  (2.56)

This looks like a pretty complicated way to calculate zero, but it is interesting to 
examine the significance of the four terms on the right-hand side. The first term is 
just the probability that a measurement of Sx on the initial state yields h/2  times 
the probability that a measurement df Sz on a state with Sx = h/2 yields —h/2. The 
second term is the probability that a measurement of Sx on the initial state yields 
- h /2  times the probability that a measurement of Sz on a state with Sx = —h/2 
yields —h/2. These two terms, which sum to are just the terms we would have 
expected if  we had made a measurement of Sx with the modified SGx device. But 
we did not make a measurement and actually distinguish which path the particle 
followed in the modified SGx device. 8  Thus there are two additional terms in (2.56), 
interference terms, that arise because we added the amplitudes on the right-hand 
side together before squaring to get the probability. You can verify that these two

8 It should be emphasized that a measurement here means any physical interaction that would 
have permitted us in principle to distinguish which path is taken (such as arranging for the particle 
to leave a track in passing through the modified SG device), whether or not we actually choose to 
record this data.
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No/4
Nq/4

No/4
Nq/4

(a)

(b)

Figure 2.6 Block diagrams o f experiments with SG devices in which 
(a) a measurement o f Sx is carried out, illustrating |(—z |—x )|2|(—x |+ z ) |2 +  
((—z |+ x ) |2|( + x |+ z ) |2 =  and (b) no measurement of Sx is made, either by
inserting a modified SGx device between the two SGz devices or by simply 
eliminating the SGx device pictured in (a), illustrating ((—z |—x )(—x |+ z )  +  
( - z |+ x ) ( + x |+ z ) |2 =  | ( - z |+ z ) |2 =  0.

interference terms do cancel the first two probabilities. These results are summarized 
in Fig. 2.6. In more general terms, if you do not make a measurement, you add the 
amplitudes to be in the different (indistinguishable) intermediate states, whereas if 
you do make a measurement that would permit you to distinguish among these states, 
you add the probabilities.

Finally, it is convenient to introduce the following shorthand notation. For a given 
two-dimensional basis, we can label our basis states by |1) and |2). We can then 
express the identity operator as

1> 'M > I =  1 (2.57)
i

where the sum is from / =  1 to i = 2. The straightforward generalization of this 
relationship to larger dimensional bases will be very useful to us later.

2.4 Matrix Representations of Operators

In order to change, or transform, kets, operators are required. Although one can 
discuss concepts such as the adjoint operator abstractly in terms of its action on the 
bra vectors, it is helpful to construct matrix representations for operators, making 
concepts such as adjoint and Hermitian operators more concrete, as well as providing 
the framework for matrix mechanics. Equation (2.25) is a typical equation of the form

m )  = \cp) (2.58)
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where A is an operator and |\fr) and \(p) are, in general, different kets. We can also 
think of the eigenvalue equation (2.35) as being of this form with |<p) just a constant 
times \ij/). Just as we can express a quantum spin state |\j/) using the Sz basis states by

\ f )  =  1+zX+zlVO +  \-z){-z\i/r) (2.59)

we can write a comparable expression for \(p)\

\<p) = \+z){+z\<p) + \-z){-z\<p) (2.60)

Thus (2.58) becomes

A (|+z>(+z|^> +  I—zX-zlV ')) =  |+z)<+z|<p) +  I—z)(-z|<p> (2.61)

In ordinary three-dimensional space, a vector equation such as F =  ma is really 
the three equations: Fx = max, Fv = may, and Fz = maz. We can formally obtain 
these three equations by taking the dot product of the vector equation with the basis 
vectors i, j, and k; for example, i • F =  i • ma yields Fx = max. Similarly, we can 
think of (2.61) as two equations that we obtain by projecting (2.61) onto our two 
basis states, that is, by taking the inner product of this equation with the bras (+z| 
and (—z|:

(+z|A|+z)(+z|V'-> +  (+z|A |-z)(-z|V '-> =  (+z| <p) (2.62a)

and

( - z \A\+z)(+z\tJ/) +  < -z |A |-z)(-z |y />  =  <-z|<p> (2.62b)

These two equations can be conveniently cast in matrix form:

/  (+z\A\+z) < + z|A |-z> \ / ( + z | ^ ) \  _  /(+z|<p>\

\  (—z|/4|+z) (—z|A|—z) /  V (-z\ijf) )  \  (—z| p̂) /
f'

In the same way that we can represent a ket \ijf) in the Sz basis by the column vector

IV̂ ) —
Sr basis

/  (+Z|V0  \ (2.64)

we can also represent the operator A in the Sz basis by the 2 x 2 matrix in (2.63). 
Just as for states, we indicate a representation of an operator with an arrow:

^ (265)
Sx basis \  ( —z|/4 |+z) (—Z|/4 | —z) /  \  A2\ A22 )

If we label our basis vectors by 11) and |2) for the states |+z) and |- z ) ,  respectively, 
we can express the matrix elements Ajj in the convenient form

Aij = (i\A\j) (2.66)
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where i labels the rows and j  labels the columns of the matrix. Note that knowing 
the four matrix elements in (2.63) allows us to determine the action of the operator 
A on any state \\fr).

MATRIX REPRESENTATIONS OF THE PROJECTION OPERATORS
As an example, the matrix representation of the projection operator P+ is given by

P+ -------  / < + ^ + l+ ‘ > < + ^ +l - * > W i  o \  (267a)
Sz basis \ ( - z |P + |+ Z )  < — Z|P+ |—Z > /  \ 0  0 /

where we have taken advantage of (2.49) in evaluating the matrix elements. Similarly, 
the matrix representation of the projection operator P_ is given by

Thus, the completeness relation P+ +  P_ =  1 in matrix form becomes

( 2.68)

where I is the identity matrix. The action of the projection operator P+ on the basis 
states is given by

c :)C)=o 
c  : ) o = o

in agreement with equations (2.49a) and (2.49b), respectively.

MATRIX REPRESENTATION OF J ,

As another example, consider the operator Jz, the generator of rotations about the 
z axis. With the aid of (2.35), we can evaluate the matrix elements:

j  ____  ̂ /  (+Zl'/zl+z) (+zlAl~z) \
5: ba.sis \  ( - Z|7z|+ Z) {-Z\Jz\ - Z ) j

_  /  (fi/2)<+z|+z> { -h i2 )<+z|-z> \

\  ( /i/2 )(-z |+ z ) ( - h / 2 ) { - z \ - z ) )

/  h/2 0  \

i o  - u p )
(2.70)
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The matrix is diagonal with the eigenvalues as the diagonal matrix elements be­
cause we are using the eigenstates of the operator as a basis and these eigenstates 
are orthogonal to each other. The eigenvalue equations j z\+z) =  {h/2)|+z) and 
Jz |—z) =  (—h/2)\-z)  may be expressed in matrix mechanics as

(T -;„)CHC)
and

(T JUKD-IC)
respectively. Incidentally, we can write the matrix representation (2.70) in the form

- < m  0 N A / l  0 X W 0  0 \
Sz basis V 0 - h i  2) 2 VO 0 /  2 VO 1/

which indicates that

t h * h * h . . . .  h . . .  . .
Jz = - p + -  - P -  = - |+ z )  +z -  — |—z) (—z| (2.73b)

2 2 2 2

We could have also obtained this result directly in terms of bra and ket vectors by 
applying Jz to the identity operator (2.48).

EXAMPLE 2.3 Obtain the matrix representation of the rotation operator 
R (< f>k) in the Sz basis.

SOLUTION Since R ( ( f > k) =  e ~ ' ^ z<t>/h and =  e T ,< t> /2 \ ± z )

( e " ' * / 2  0  \
R((f>k) — *-» I n I

st biffs V 0  e'M2 )

This matrix is diagonal because we are using the eigenstates of Jz as a basis.

MATRIX ELEMENTS OF THE ADJOINT OPERATOR
We next form the matrix representing the adjoint operator If an operator A acting 
on a ket | V̂ ) satisfies

then, by definition,

A |V0 =  I <P) (2.74)
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I if/) ---------  ► A\y)

Figure 2.7 The adjoint operator A * o f an operator A is 
defined by the correspondence between bras and kets.

(See Fig. 2.7.) If we take the inner product of (2.74) with the bra (x |, we have

( x \ W )  = (x\<P) (2.76)

while taking the inner product of (2.75) with the ket |x ), we obtain

W\A'\x)  = (<P\x) (2.77)

Since (x\<P) =  (<P\x)*> we see that

W A ^ x )  = ( X \ A W  (2.78)

This straightforward but important result follows directly from our definition (2.75) 
of the adjoint operator. It can be used to tell us how the matrix representations of an 
operator and its adjoint are related. If we replace \j/) and lx) with basis states such 
as |+z) and |- z ) ,  we obtain

(<'|At l7 ) =  (7 MIO* (2.79)

We denote this as

4  =  A*, (2.80)

which tells us that the matrix representing the operator A* is the transpose conjugate 
of the matrix representing A. We can define the adjoint m atrix A* as the transpose 
conjugate of the matrix A.

We also find another important result. Since by definition a Hermitian operator
A A A A A

A satisfies A = A',  then (i\A\j) = (j\A\i)*, showing that the matrix representation 
of a Hermitian operator equals its transpose conjugate matrix. Our terminology for 
adjoint and Hermitian operators is consistent with the terminology used in linear 
algebra for their matrix representations. We can now see from the explicit matrix 
representations of the operators P+ in (2.67) and Jz in (2.70) that these are Hermitian 
operators, since the matrices are diagonal with real elements (the eigenvalues) on the 
diagonal. In Chapter 3 we will see examples of Hermitian operators with off-diagonal 
elements when we examine the matrix representations for Jx and Jv for spin-j and 
spin- 1  particles.
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IY'} B\y) A B\y/)

(\f/ 1
fit

( i p l f i t -
4 + {y\B^A'

Figure 2 .8 The adjoint o f the product o f operators is 
determined by the correspondence between bras and kets.

THE PRODUCT OF OPERATORS
We often must deal with situations where we have a product of operators, such as 
(2.51), which involves the product of two projection operators. Another way such a 
product of operators might arise is to perform two successive rotations on a state. To 
obtain the matrix representation of the product AB of two operators, we first form 
the matrix element

(i\AB\j)

If we insert the identity operator (2.57), we obtain

(i\AB\j) =  (i'|A { £  \k)(k\ ) B\j)  =  £  (i\A\k)(k\B\j) = AlkBkJ (2.81)
\  k / k k

which is the usual rule for the multiplication of the matrices representing A and B.
What is the adjoint operator for the product AB of two operators? As Fig. 2.8 

shows,
(ABy = B^A' (2.82)

EXAMPLE 2.4 Use matrix mechanics to show that P^ =  P+, P̂_ = P_, 
and P+P_ = 0.

SOLUTION

K K
5'- basis

.S', basis

1

0

0

0

p+p.
.S'- basis

:k: :m:
:)C :w:
c  :m : :)■
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2.5 Changing Representations

The rotation operator R* can be used to rotate a ket |\fr) into a new ket |\jf') in an 
active transformation:

W )  = J?V > (2.83)

Recall that the rotation operator R* is just the inverse of the rotation operator R, so 
if R rotates the state counterclockwise about the axis n by some angle 9, then R* 
rotates the state clockwise about the axis n by the same angle 9:

fr(9n) = R(-9n)  (2.84)

We can form a representation for the ket |\jr') in the S, basis, for example, in the 
usual way:

____  ̂ /  ( + W )  \  = /  <+il*tl^) \
Sz basis V ( - Z | ^ r ' ) /  \ ( - Z | r t + | ^ } /

(2.85)

There is, however, another way to view this transformation. Instead of the operator 
R* acting to the right on the ket, we can consider it as acting to the left on the bras. 
From our earlier discussion of the adjoint operator, we know that kets corresponding 
to the bras (± z |/ r  are I?|±z). Since R is the inverse of the operator R \  we see that 
instead of R+ rotating the state |\fr) into a new state |\fr') as in (2.83), we may consider 
the operator in (2.85) to be performing the inverse rotation on the basis states that 
are used to form the representation.

Let’s take some specific examples to illustrate. In Problem 3.5 it is shown that

|+x) =  /?(fj) |+ z) (2 .86)

where

l+x) =  -)= |+ z) +  l-z ) 
V 2  V 2

(2.87)

From (2.42) we see that

I? (fk )|+ x)= e ,7r/4
v/2 l+Z> +  V 2

( 2 .88)

which as we noted differs from the state we have defined as | + y ) by the overall phase 
factor of e 71/4. An alternative would be to define |+y) =  I?(^-k)|+x) including this 
phase factor. Similarly, we would define the state |-x )  as one that is obtained by

I —X) =  /? (T j)|-Z> (2.89)
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that is by a rotation of the state |- z )  by 90° around the y axis. Following this 
procedure, as Problem 3.5 shows, we find that

l-x) = — 5=|+z> + -—I—*)
V2 V2

(2.90)

which differs from (2.15) by an overall minus sign.
We will use the states |+x) and | -x )  shown in (2.87) and (2.90) for the remainder 

of this section since it is convenient to focus our discussion on basis states that 
are related to the states by |+z) and |—z) by application of a rotation operator, 
specifically

|±x) =  /?(fj)|±z> (2.91a)

and therefore

<±x| =  (±z|K +($j) (2.91b)

If we take the operator R* in (2.85) to be the specific rotation operator fl+(^-j), then 
when this operator acts to the left on the bra vectors it transforms the Sz basis to the 
Sx basis according to (2.91 b). But if / T ^ j )  acts to the right, it generates a new state

W') = & ( % M )  (2.92)

We can summarize our discussion in the following equation:

, ____  ̂ /  (+ZIVO \  _  /  <+z|^(fj)|V0 \  _  /  ( + X \ f )

.V.-basis \ ( - Z | ^ f ' ) /  \  (-Z l^^ fj)!^ ) /  \<-X |^)
(2.93)

Read from the left, this equation gives the representation in the Sz basis of the state 
| ij/') that has been rotated by 90° clockwise around the y axis, whereas read from 
the right, it shows the state |\j/) as?being unaffected but the basis vectors being ro­
tated in the opposite direction, by 90° counterclockwise around the y axis. Both of 
these transformations lead to the same amplitudes, which we have combined into 
the column vector in (2.93). This alternative of rotating the basis states used to form 
a representation is often referred to as a passive transformation to distinguish it 
from an active transformation in which the state itself is rotated. A passive trans­
formation is really just a rotation of our coordinate axes in our quantum mechanical 
vector space, as illustrated in Fig. 2.9 . 9

Sx basis
\ f )

9 If (2.43) did not seem sufficiently strange to you. try considering it from the perspective 
of a passive transformation. If we rotate our coordinate axes by 360° and end up with the same 
configuration of coordinate axes that we had originally, we find the state of a spin-j particle has 
turned into the negative of itself.
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.v

7 z

X

(a) (b)

Figure 2.9 (a) Rotating a state by angle </> counter­
clockwise about an axis is equivalent to (b) rotating 
the coordinate axes by the same angle in the opposite 
direction, keeping the state fixed.

Equation (2.93) suggests a way to relate the column vector representing the ket 
\\J/) in one basis to the column vector representing the same ket in another basis. If 
we start with the representation of the ket \ijf) in the Sx basis and insert the identity 
operator, expressed in terms of Sz basis states, between the bra and the ket vectors, 
we obtain

where the second line follows from (2.91b). We call the 2 x 2 matrix in (2.94) 
S1”, or more precisely in this specific example Sf(^j), since it is really the matrix 
representation in the Sz basis of the operator ^ ( ^ j )  that rotates kets by 90° clockwise 
about the y axis. Equation (2.94) transforms a given ket \\j/) in the Sz basis into the 
Sx basis.

We can transform from the Sx basis to the Sz basis in analogous fashion:

where in the first line we have inserted the identity operator, this time expressed in 
terms of the Sx basis states. Also we have used (2.91a) to express the 2 x 2 matrix in 
the second line of the equation in terms of the matrix representation of the operator 
/?(^j). Comparing the first lines of (2.94) and (2.95) reveals that the 2 x 2 matrix in 
(2.95) is the matrix S, the adjoint matrix of the matrix §*, since the matrix elements

(+XIV0  

<—x|V0 ) - (
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of § are simply obtained from the matrix elements of §* by taking the transpose 
conjugate. Also, a comparison of the second lines of (2.94) and (2.95) shows that 
the 2 x 2 matrix in (2.95) is the matrix representation of R ( j j), while the 2 x 2 
matrix in (2.94) is the matrix representation of ^ ( ^ j ) .  Since the rotation operators 
are unitary, the matrices must satisfy

StS =  H (2.96)

which can also be verified by substituting equation (2.95) directly into equation
(2.94).

We can now determine how the matrix representation of an operator in one basis 
is related to the matrix representation in some other basis. For example, the matrix 
representing an operator A in the Sx basis is given by

;  /<+x|A|+x> <+x|A|-x>\
A ------- ► „ . (2.97)

S x basis \ ( - x | A | + X )  ( - X | A | - X ) /

A typical matrix element can be expressed as

{+x|A| x) =  (+z|Rt(fj)A R (fj)|—z>

Inserting the identity operator (2.44) before and after the operator A on the left-hand 
side or between each of the operators on the right-hand side [or using result (2.81) 
for the matrix representation of the product of operators] permits us to write

A ------- ► StAS (2.98)
Sx basis

where A is the matrix representation of A in the Sz basis. 1 0

Let’s take the example of evaluating the matrix representation of Jz in the Sx 
basis. Using (2.87) and (2.90) to evaluate the matrix § in (2.95), we find

/  <+z|+x> <+z|-x> \  _  J /  1 - 1 \
\ ( - z |+ x )  (—z| —x) /  y/2 \  1 1 /

(2.99)

10 The first lines of (2.94) and (2.95) form a good advertisement for the power of the identity 
operator. Rather than trying to remember such equations, it is probably easier and safer to derive 
them whenever needed by starting with the matrix elements (or amplitudes) that you are trying to 
find and inserting the identity operator from the appropriate basis set in the appropriate place(s). 
In this way we can work out the matrices in (2.98):

/  (+ x \A \+ x)  (+ x| A | x) \
V (-x |i4 |+ x )  ( x |A | x) /

_  /  (+X |+z) (+ x |- z )  \  /  (+ z |4 |+ z )  (+Z li4 |-z) \  /  (+ z |+ x ) (+ z |-x )  \
~  V ( x| +  z) ( x| z) )  V ( -z |i4 |+ z )  ( - z |i4 |- z )  )  V ( - z |+ x )  ( - z | - x )  )
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Carrying out the matrix multiplication (2.98) using the matrix representation of Jz 
in the Sz basis from (2.70), we obtain

j ___>_ L ( X l\ - ( l 0 \ — ( l - 1

z Sx  basis  ̂ y/2 \  — 1 1 /  2 \  0 - \ )  V 2 \ \  1 /  _  2 \  — 1 0

(2. 100)

Comparing (2.100) with (2.70), we see that the matrix representation of the operator 
is no longer diagonal, since we are not using the eigenstates of the operator as the 
basis. 11

If we also take advantage of (2.94) to express the eigenstate |+z) in the Sx basis,

1+8 7 5 ? 5 5  ( -i D Q -JsC .) (2“ l
we can express the eigenvalue equation 72 |+z) =  (h/2)|+z) in the Sx basis:

Compare (2.102) with (2.71), where the same equation is written in the Sz basis. 
Note that the eigenvalue equation is satisfied independently of the basis in which 
we choose to express it. This eigenvalue equation in its most basic form deals with 
operators and states, not with their representations, which we are free to choose in 
any way we want.

Before leaving this section, it is worth emphasizing again what we have learned. 
The S-matrices give us an easy way to transform both our states and our operators 
from one matrix representation to another. As the first line in both equations (2.94) 
and (2.95) shows, these S-matrices are composed of the amplitudes formed by taking 
the inner product of the basis kets of the representation we are transforming/rom with 
the basis bras of the representation we are transforming to. It is often convenient, 
however, to return to the active viewpoint with which we started our discussion. 
Instead of the S-matrices transforming a given state from one basis to another, we 
can view the S-matrix as the matrix representation of the rotation operator that rotates 
the given state into a different state within a fixed representation. This will be our 
starting point in Chapter 3. As we have seen, an active rotation that transforms the

11 Alternatively, we could evaluate the matrix representation of Jz in the Sx basis by expressing 
the basis states |± x) in terms of |± z) so that we can let Jz act on them directly. For example, the 
element in the first row, second column of (2.100) is given by

(+ x |7 z|- x )  =  -  ( ( + z |+ ( - z |)  Jz (-I+Z ) +  | z ))

=  ^ ( ( + z |+ ( - z |)  ( ~ l + z )  -  | l - z ) )  =
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state is just the inverse of the passive rotation that transforms the basis vectors used 
to form a particular representation.

EXAMPLE 2.5 The first lines of (2.94) and (2.95)as well as equation (2.98) 
and its inverse can be used to switch back and forth between the Sz and Sx 
bases for basis states such as

l+x> =  7 i l+z) +  T i ' ~ z) ' “ x) =  T i ' +Z) ~ T i ' ~ z)

even though in this case the S-matrix

§ _ / < + zl+x> < + z |-x> \

M -z l+ x )  (—z |—x) /

is not the matrix representation of the rotation operator. Determine § for these 
basis states and use it to repeat the calculations given in (2 . 1 0 0 ), (2 . 1 0 1 ), and 
(2 . 1 0 2 ).

SOLUTION

§ _ / < + zl+x> < + z |-x> \ _ J _  /  I 1 \

\ ( - z |+ x )  (—z| —x) /  n/ 2  \  1 - 1 /

Thus in the 5V basis

^ ^ / < + x |+ z >  <+X|-Z> \  /  <+Z|/z|+Z> (+Z |i 2 | - Z ) \

\ ( - x |+ z )  (—x |—z> /  V ( - z | i 2 |+z) (-Z |7z| - Z ) /

x /  <+z|+x) (+ z l-x ) \
\ ( - z |+ x )  (—z| —x) /

= - L ( l ° ^ _ L ( x =  l \
~  y/ l  V 1 —1 / 2  VO - 1 /  V 2  \ 1  - 1 /  2  V 1 0 /

The state |+z) can be transformed into the Sx basis by the matrix §+, which 
in this case is equal to the matrix S:

l+ z>
Sx  basis

Thus the eigenvalue equation / Z|+z) =  (h/2)|+z) in the Sx basis becomes

h / o  
2 V 1

As before, we see that the eigenvalue equation is satisfied with the same 
eigenvalue in either basis.
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2.6 Expectation Values

It is interesting to see how we can use matrix mechanics to calculate expectation 
values of observables like the z component of the angular momentum with which 
we have associated the operator Jz. If a spin-^ particle is in the state

\ f )  = 1+zX+zlVO +  I—z><—z|VX (2.103)

then, as we saw in Section 1.4, the expectation value of S, is given by

(Sz) = K +ZW I 2  +  ( ~ f j  K -Z W I 2  (2.104)

That is, the expectation value of Sz is the sum of the results h/2 and — h/2  of a 
measurement multiplied by the probability |(+z|V ^ ) | 2  and |(-z |V ') |2, respectively, of 
obtaining each result. We can express this expectation value in matrix mechanics as

h (  l 0  \  /  (+z|VX \
(5I) = (W + z).W - z ) , - ( o _ , ) ( (_ 2|J  (2-105)

as can be verified by explicitly carrying out the matrix multiplication. The right-hand 
side of (2.105) is the representation in the Sz basis of (Vfl-/zIVf)- Thus, we can also 
express the expectation value in the form

(Sz) = (rJ,\JzW) (2.106)

In the language of eigenstates and eigenvalues, the expectation value (2.104) is 
the sum of the eigenvalues with each weighted by the probability of obtaining that 
eigenvalue. The advantage of expressing the expectation value in the form (2.106) 
is that we needn’t evaluate it in a representation in which the basis states are the 
eigenstates of the operator in question. For example, we could evaluate (2.106) in 
the Sx basis by inserting the identity operator (2.53) between the bra vector and the 
operator and between the operator and the ket vector. Then we have

(Sz) = ((iM+x>, (iM-x>)
(+x|72|+x> (+x|y2|-x> \  /  (+x\f)  \
(-x |72|+x) ( - x |i2|-x ) /  \  (-xlVX /

You can verify that we can also go from (2.105) in the Sz basis to (2.107) in the 
Sx basis by inserting the identity operator §§+ before and after the 2 x 2 matrix 
in (2.105), provided we use the S-matrix (2.99) that transforms between these two 
basis sets.

As an example, let’s return to (1.20), where we evaluated the expectation value 
of Sz for the state |+x). Substituting the column vector representation (2.6) for this
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ket in the S2 basis jnto (2.105), we see that the expectation value may be written in 
matrix form as

(2.108)

EXAMPLE 2.6 Use matrix mechanics to evaluate the expectation value 
(Sz) for the state |+x) in the Sx basis states

l+x> =  7 I I+Z> +  T i ' ~ z) '~ x) =  7 ! l+z) “

SOLUTION In Example 2.5 we saw that in this basis

n / o  i
• 2  \  1 0  /

then for the state |+x)

h / 0  1x h
This result agrees of course with (2.108). In (2.108) the matrix form for the 
operator is especially straightforward, while here it is the representation for 
the state that is especially simple.

EXAMPLE 2.7 Use matrix mechanics to determine (Sz) for the state

m  = ^\+*) + ‘- Y \ - z )

Compare your result with thatfef Example 1.2.

SOLUTION

1 r  h (  1 0  \  1(5; ) =  W 5z W  =  - ( l , - , V 3 ) I ( o _ J -

in agreement with Example 1.2.

h
4

2.7 Photon Polarization and the Spin of the Photon

The previous discussion about representations of states and operators may seem 
somewhat mathematical in nature. The usefulness of this type of mathematics is just
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Figure 2.10 Two sets of transmission axes of a polarizer that 
may be used to create polarization states o f photons traveling 
in the z direction.

a reflection of the fundamental underlying linear-vector-space structure of quantum 
mechanics. We conclude this chapter by looking at how we can apply this formalism 
to another physical two-state system, the polarization of the electromagnetic field. 
Many polarization effects can be described by classical physics, unlike the physics 
of spin-^ particles, which is a purely quantum phenomenon. Nonetheless, analyzing 
polarization effects using quantum mechanics can help to illuminate the differences 
between classical and quantum physics and at the same time tell us something 
fundamental about the quantum nature of the electromagnetic field.

Instead of a beam of spin-^ atoms passing through a Stem-Gerlach device, 
we consider a beam of photons, traveling in the z direction, passing through a 
linear polarizer. Those photons that pass through a polarizer with its transmission 
axis horizontal, that is, along the x axis, are said to be in the state |x), and those 
photons that pass through a polarizer with its transmission axis vertical are said 
to be in the state |y ) . 1 2  These two polarization states form a basis and the basis 
states satisfy {x\y) = 0 , since a beam of photons that passes through a polarizer 
whose transmission axis is vertical will be completely absorbed by a polarizer whose 
transmission axis is horizontal. Thus none of the photons will be found to be in the 
state |x) if they are put into the state |y) by virtue of having passed through the initial 
polarizer (assuming that our polarizers function with 1 0 0  percent efficiency).

We can also create polarized photons by sending the beam through a polarizer 
whose transmission axis is aligned at some angle to our original x-y axes. If the 
transmission axis is along the x' axis or y' axis shown in Fig. 2.10, the corresponding 
polarization states may be written as a superposition of the |x) and |y) polarization 
states as

|x') =  |x)(x|x ') +  |y)(y |x ')

|y') =  |x)(x |y ') +  |y )(y |y ') (2.109)

What are the amplitudes such as (x|x'), the amplitude for a photon linearly 
polarized along the jc' axis to be found with its polarization along the x axis?

12 These states are often referred to as |.v) and |y). A different typeface is used to help 
distinguish these polarization states from position states, which will be introduced in Chapter 6.
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Figure 2.11 An x' polarizer followed by an 
x  polarizer.

A classical physicist asked to determine the intensity of light passing through a 
polarizer with its transmission axis along either the x or the y axis after it has passed 
through a polarizer with its transmission axis along x \  as pictured in Fig. 2.11, 
would calculate the component of the electric field along the x or the y axis and 
would square the amplitude of the field to determine the intensity passing through 
the second polarizer. If we denote the electric field after passage through the initial 
polarizer by Ex>, then the components of the field along the x and y axes are given by

Ex = Ex> cos (j> Ev = Ex> sin </>

Thus the intensity of the light after passing through the second polarizer with 
its transmission axis along the x or y axis is proportional to cos2  0  or sin2  <f>, 
respectively. We can duplicate the classical results if we choose {x\x') =  cos 0  and 
{y\x') =  sin 0 . Similarly, if the first polarizer has its transmission axis along the 
/  axis and we denote the electric field after passage through this polarizer by £y  
then the components of the field along the x and y axes are given by

Ex = —EY> sin (j> Ev = Ev> cos (j>

Again, we can duplicate the classical results if we choose {x\y') = — sin 0  and 
(y \y') = cos (j>. Of course, the experiments outlined here alone do not give us any 
information about the phases of the amplitudes. However, since classical electromag­
netic theory can account for interference phenomena such as the Young double-slit 
experiment, it is perhaps not too surprising that our conjectures about the amplitudes 
based on classical physics yield a valid quantum mechanical set, including phases:

\x') =  cos </>\x) +  sin </>\y)

\y') = — sin (f>\x) +  cos <j>\y) (2 . 1 1 0 )

Where do the quantum effects show up? Classical physics cannot account for 
the granular nature of the measurements, that a photomultiplier can detect photons 
coming in single lumps. Nor can it account for the inherently probabilistic nature of 
the measurements; we cannot do more than give a probability that a single photon 
in the state \x') will pass through a polarizer with its transmission axis along x. For
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example, if the angle (j> = 60°, then a single photon after having passed through 
an x' polarizer has a probability of | (x\x')\2 =  cos2  60° =  0.25 of passing through a 
second x polarizer. Knowing the polarization state of the photon does not, in general, 
determine whether it will pass through a subsequent polarizer. All we can determine 
is the probability, much to the discomfiture of the classical physicist who would like 
to believe that such results should be completely determined if enough information 
is known about the state of the system. The classical and quantum predictions are, 
however, in complete accord when the intensity of the beams is high so that the 
number of photons is large.

We can use (2.110) to calculate the matrix § + that transforms from the |x)-|y) 
basis to the \x')-\y') basis:

/  (x'|x> (x'|y) \  _  /  cos<£ sin (j> \
V ( y »  (y'ly) /  \  -  sin </> cos 0 /

Sf =  l • " 1  =  1 • I (2.111)

The matrix § that transforms from the \x')-\y') basis to the |x)-|y) basis is given by 

, , , , , j ' ) \  / c o s (/> - s in < £ \
s = l  ; ) =  ( . (2.112)

' )  /  \  sin (j> cos (j> /

You can check that these matrices satisfy §+§ =  I. All the elements of the matrix 
§ are real. In fact, it is an example of an orthogonal matrix familiar from classical 
physics for rotating a vector in the x-y plane counterclockwise about the z axis by 
an angle <j>. We can express § in terms of the rotation operator R(<f>k) that rotates the 
ket vectors themselves in this direction (|x') =  /?(0 k)|x) and |y') =  J?(0 k)|y)):

/  {x\R((f>k)\x) (x|/?(0k)|y) \  _ / c o s 0  - s in < £ \ 

\  (y|J?(0 k)|x) (y|J?(0 k)|y) /  \ s i n 0  cos 0  /

There is another set of basis vectors that have a great deal of physical significance 
but cannot be obtained from the |x)-|y) basis by a simple rotation. We introduce

\R) =  ~^=(\x) +  / |y »
V 2

|L) =  - j= ( |x ) - i |y > )  
V 2

(2.114a)

(2.114b)

These states are referred to as right-circularly polarized and left-circularly polarized, 
respectively.

First, let’s ask what the classical physicist would make of a right-circularly 
polarized electromagnetic plane wave of amplitude E0 traveling in the z direction.

E =  E0iei(kz- OJt) +  iE0 y (kz~<ot) (2.115a)
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Of course, the classical physicist uses complex numbers only as a convenient way 
to express a wave. The physics is determined by the real part of (2.115a), or

The “extra” factor of i in the y component of E in (2.115a) here means that the x 
and y components of the electric field are 90° out of phase, as (2.115b) shows. If 
we take z = 0 and examine the time dependence of the electromagnetic field, we see 
an E field that rotates in a circle as time progresses. If you curl your right hand in 
the direction of the changing E, your thumb points in the direction of propagation 
along the positive z axis. The E field of the left-circularly polarized electromagnetic 
plane wave rotates in the opposite direction and thus would require you to curl your 
left hand in the direction of changing E to have your thumb point in the direction of 
propagation.

We can produce circularly polarized light by allowing linearly polarized light 
to fall on a birefringent crystal such as calcite that is cut so that the optic axis 
of the crystal lies in the x-y plane. Light polarized parallel to the optic axis in a 
birefringent crystal has a different index of refraction than does light perpendicular 
to the optic axis. We can orient our coordinate axes so that the optic axis is along 
x and the perpendicular axis is, of course, along y. Denoting the different indices 
of refraction by nx and n v, we see from (2.115a) that light polarized parallel to the 
x axis will pick up a phase (nxco/c)z in traversing a distance z through the crystal. 
Similarly, light polarized parallel to the y axis will gain a phase (;?va>/c)z. Thus 
a beam of linearly polarized light incident on such a crystal with its polarization 
axis inclined at 45° to the x axis will have equal magnitudes for the x and y 
components of the electric field, as indicated in Fig. 2.12, and there will be a phase 
difference [(nx — n v)co/c]z between these two components that grows as the light 
passes through a distance z in the crystal. The crystal can be cut to a particular 
thickness, called a quarter-wave plate, so that the phase difference is 90° when the 
light of a particular wavelength exi&the crystal, thus producing circularly polarized 
light.

What does the quantum physicist make of these circular polarization states 
(2.114)? Following the formalism of Section 2.2, it is instructive to ask how these 
states change under a rotation about the z axis. If we consider a right-circularly

E =  E0i cos(kz — cot) — E0j  sin(kz — cot) (2.115b)

Figure 2.12 Plane-polarized light incident on a quarter-wave 
plate with its direction o f polarization oriented at 45° to the 
optic axis will produce circularly polarized light.
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polarized state that has been rotated by an angle 0  counterclockwise about the z axis, 
we see that it can be expressed as

\R , )= j = ( \ x,) + i\y '))

=  —̂ [cos 0|x) +  sin 0| y) +  / ( -  sin 0|x) +  cos0|y))] 
V 2

(cos 0  — i sin 0 )

= n

= e~i4>\R)

(| r̂) +  /'!>'))

(2.116)

Thus this state picks up only an overall phase factor when the state is rotated about 
the z axis. Based on our experience with the behavior of spin-1 states under rotations, 
(2.116) indicates that the state is one with definite angular momentum in the z 
direction. Since (2.32) shows that

|/?') =  fl(0k)|/?> = e~iJ=*n\R) (2.117)

consistency with the preceding equation requires that

Jz\R) = h\R) (2.118)

Similarly, if we rotate the left-circularly polarized state by angle 0  counterclockwise 
about the z axis, we obtain

\L')=ei*\L) (2.119)

telling us that1 3

Jz\L) = -h\L)  (2.120)

Thus the right-circularly and left-circularly polarized states are eigenstates of Jz, the 
operator that generates rotations about the z axis, but with eigenvalues ±h,  not the 
±h/2  characteristic of a spin-^ particle. In Chapter 3 we will see that the eigenvalues 
of Jz for a spin-1 particle are +h, 0, and —h. Photons have intrinsic spin of 1 instead 
of 4 • The absence of the 0 eigenvalue for Jz for a photon turns out to be a special 
characteristic of a massless particle, which moves at speed c.

13 A particle with a positive (negative) projection of the intrinsic angular momentum along the 
direction of motion is said to have positive (negative) helicity. Photons thus come in two types, 
with both positive and negative helicity, corresponding to right- and left-circularly polarized light, 
respectively.
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EXAMPLE 2.8 Determine the matrix representation of the angular mo­
mentum operator Jz using both the circular polarization vectors |R) and \L) 
and the linear polarization vectors |x) and |y) as a basis.

SOLUTION Let’s start with the easy one first. Since the states |R) and |Z_) 
are eigenstates of Jz with eigenvalues h and —h, respectively

J  _______  ( {R \JZ\R) {R\Jz\L)\ = / h  0 \
2  w-wbasis' V (L\JZ\R) (L\JZ\L) )  VO - h )

The matrix is diagonal in this basis with the eigenvalues of the basis states 
on the diagonal. Switching to the linear polarization states |x) and |y) :

j  _______  ̂ (  (x\R) (x |L) \  /  (R\JZ\R) (R\JZ\L) \  /  {R\x) (R\y) \
2 \x).\y)  b a s is ' V (y\R) (y\L) )  V (L\JZ\R) (L\JZ\L) )  v (L\X) (L\y) )

-U', -X -JiC I X
In this basis, the matrix has only off-diagonal elements. Since a Hermitian 
matrix is equal to its transpose, complex conjugate, both of these represen­
tations for Jz satisfy this condition, as they must.

2.8 Summary

In this chapter we have introduced operators in order to change a state into a different 
state. Since we sire dealing here primarily with states of angular momentum, the 
natural operation is to rotate these states so that a state in which a component of the 
angular momentum has a definite value in a particular direction is rotated into a state 
in which the angular momentum t$s the same value in a different direction. 1 4  The 
operator that rotates states counterclockwise by angle 4> about the z axis is

R{(t> k) = e - iJ^ /n (2 . 1 2 1 )

where the operator Jz is called the generator of rotations about the z axis. In general, 
for an arbitrary operator A , the bra corresponding to the ket

m )  = \<P) (2 . 1 2 2 a)
is

( f \A '  = ((p\ (2 . 1 2 2 b)

14 This way of describing a rotation of an angular momentum state may seem somewhat 
awkward, but in Chapter 3 we will see why we cannot say that the angular momentum simply 
points in a particular direction.
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where the dagger denotes the adjoint operator. Thus the rotated bra corresponding 
to the rotated ket

( 0  k ) |0 )  =  e - iJ**/nW) (2.123a)

is given by

<01^(010 =  W\eiJ'Hn (2.123b)

In order for probability to be conserved under rotation,

<i^|«+(0k)R (0k)|^> =  =  < W >  (2.124)

which requires that the generators of rotation be Hermitian:

j* =  I  (2.125)

An operator like the rotation operator that satisfies R*R =  1 is called a unitary 
operator.

Fora spin-^ particle, the spin-up-along-z state |+z) and spin-down-along-z state 
|—z) satisfy

Jz\± z) = ± ||± z ) (2.126)

showing that when the generator of rotations about the z axis acts on these states, 
the result is just the state itself multiplied by the value of Sz that these states sire 
observed to have when a measurement of the intrinsic spin angular momentum in 
the z direction is carried out. Thus we can use a terminology in which we label the 
states |±z) by \SZ = ± h / 2), that is, we label the states by their values of Sz. Similarly, 
for example,

Al±x> = ± ||± x ) (2.127)

where Jx is the generator of rotations about the x axis. In Chapter 3 we will argue 
on more general grounds that we should identify the generator of rotations with the 
component of the angular momentum along the axis about which the rotation is 
taking place. In subsequent chapters we will see that the operator that generates 
displacements in space is the linear momentum operator and the operator that 
generates time translations (moves the state forward in time) is the energy operator. 
Thus we will see repeated a pattern in which a Hermitian operator A is associated 
with a physical observable and the result an of a measurement for a particular state 
|an) satisfies

A \an ) = a n\a„) (2.128)
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Note that for a Hermitian, or self-adjoint, operator (A =  A*), the bra equation 
corresponding to (2.128) is

(an\A = (an\a* (2.129)

An equation in which an operator acting on a state yields a constant times the state 
is called an eigenvalue equation. In this case, the constant an in (2.128) is called the 
eigenvalue and the state \an) [or (an\ in (2.129)] is called the eigenstate.

We will now show that the eigenvalues of a Hermitian operator are real. Taking 
the inner product of the eigenvalue equation (2.128) with the bra {ak |, we obtain

(ak\A\an) = a n(ak\an) (2.130)

Taking advantage of (2.129), this equation becomes

a*k(ak\an) = a„(ak\an) (2.131a)

or

(a*k -  an)(ak\an) = 0  (2.131b)

Note that if we take k = n, we find

( a * - a n)(an\an) = 0  (2.132)

and therefore the eigenvalues of a Hermitian operator are real (a* = an), accessary  
condition if these are to be the values that we obtain for a measurement. Moreover, 
(2.131b) shows that

(ak\an) =  0 ak ^ a n (2.133)

as we argued in Chapter 1 must be tfpe based on the fact that (ak\a„) is the amplitude. •>-
to obtain ak for a particle in the state \an). This shows that the eigenstates of a 
Hermitian operator corresponding to distinct eigenvalues are orthogonal. Thus our 
association of Hermitian operators with observables such as angular momentum 
forms a nice, self-consistent physical picture.

We also see that we can express the expectation value (A) of the observable A in 
terms of the operator A as

(A) = ( f \ A \ f )  (2.134)

For simplicity, let’s consider the case where there are two eigenstates 1^) and \a2) 
with a i ^ a 2, as is the case for spin Since a general state can be written as

IVO = C\\ax) + c 2\a2) (2.135)
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then

W \A \ t )  =  (c\(ax\ + cl(a2\)A{cx\ax) +  c2 |a2»

=  (c\(a{\ +cl{a2\)(c{a {\a{) + c2a2\a2))

= \c\\2a\ +  |c2 |~a2

= (A) (2.136)

where the last step follows since the penultimate line of (2.136) is just the sum of the 
eigenvalues weighted by the probability of obtaining each of those values, which is 
just what we mean by the expectation value.

Also note that, as in (1.40), (2.135) can be expressed in the form

I VO =  ItfiX^ilVO +  \a2)(a2\ f )  (2.137)

This suggests that we can write the identity operator in the form

Ifli>(flil +  |fl2 >(fl2 l =  l (2.138)

which is also known as a completeness relation, because it is equivalent to saying 
that we can express an arbitrary state \xf/) as a superposition of the states 1^ )  and 
|a2), as shown in (2.137). The identity operator can be decomposed into projection 
operators

^  =  l^iXail and P2 = \a2){a2\ (2.139)

that project out of the state \xf/) the component of the vector in the direction of the 
eigenvector. For example,

P i m  = \al)(alm  (2.140)

If we insert the identity operator (2.138) between the ket and the bra in the
amplitude {(pity), we obtain

((p\f) = (<p\ai)(aiW) +  ((p\a2)(a2\ f )  (2.141)

Thus, if a particle is in the state | xfr) and a measurement is carried out, the probability 
of finding the particle in the state |cp) can be written as

= m  a,)(a,|i/'> +  (2.142)

Note that the amplitudes ((p\a{)(ai\xj/) and (<p\a2) (a2\\J/) can interfere with each other. 
Equation (2.142) presumes that no measurement of the observable A has actually 
taken place. If we were to actually insert a device that measured the observable A 
for the state \\f/), we would then find the probability to obtain the state \<p) given by

|(»>|a1>|2|(ai|^)l2 + l(«>l«2>l2l<‘>2l'/'>l2 (2.143)
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which is just the sunj of the probabilities of finding | VO in the states \a j) and |a2) times 
the probability that each of these states is found in the state | cp). Equations (2.142) and 
(2.143) illustrate one of the fundamental principles of quantum mechanics: When 
we do not make a measurement that permits us to distinguish the intermediate states 
\ax) and \a2), we add the amplitudes and then square to get the probability, while if 
we do make a measurement that can distinguish which of the states \ax) and \a2) the 
particle is in, we add the individual probabilities, not the amplitudes. For a specific 
example, see the discussion at the end of Section 2.3.

A convenient shorthand notation is to use the eigenstates \ax) and \a2) as a basis 
and represent a ket such as (2.135) by a column vector

W ) ------ >(C|) = ( r i|n) (2-144)ifl,)-i«2>basis \ c 2 /  \  {a2\ y / ) /

a bra by a row vector

W ------------ ► « ,  c2*) =  ( m a i l  m a 2)) (2.145)
l</|)-|«2> basis

and an operator by a matrix

- ________  ̂ (  (ax\B\ax)
|«|)-|<i2) basis V (a2\B\ax)

In this notation, an equation such as

m )  = w)

(a\\B\a2)
(a2\B\a2) )  2> /

(2.146)

(2.147)

becomes

/ ( a x\B\ax) (ax\B,\a2) \  /  (ax\ir) \  =  /  {ax\<p) \

\ ( a 2 |£|tfi) (a2\B\a2) )  \ { a 2\rl/) )  V (a2\(p) )

Knowing the matrix elements (^,151^) permits us to evaluate the action of the 
operator B on any state | \j/). As an example, we can use matrix mechanics to evaluate 
the expectation value of B in the state | \f/):

, , (  (a\\B\ax)
(B) = W\BW) = (W \a l),(1r\a2))[  # '

V (a2\B\ax)
{ax\B\a2) \  /  (ax\rfr) \  
{a2\B\a2) )  \  {a2\rfr) )

(2.149)

where the last step follows from inserting the identity operator (2.138) between the 
bra (rfr \ and the operator B and between the operator B and the ket | VO - Finally, note
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that if basis states are the eigenstates of the operator, the matrix representation is

All of the results (2.135) through (2.150) can be extended in a straightforward 
fashion to larger dimensional bases, as introduced in Section 1.6 . For example, the 
identity operator is given by Y n \an)(an\ in the more general case.

Problems

2 .1 . Show that

by comparing the Taylor series expansions for the two functions.

2 .2 . Use Dirac notation (the properties of kets, bras, and inner products) directly 
without explicitly using matrix representations to establish that the projection oper­
ator P+ is Hermitian. Use the fact that P£ =  P+ to establish that the eigenvalues of 
the projection operator are 1 and 0 .

2.3. Determine the matrix representation of the rotation operator R(<f>k) using the 
states |+z) and |—z) as a basis. Using your matrix representation, verify that the 
rotation operator is unitary, that is, it satisfies R*(<j>k)R(<j>k) = 1.

2.4. Determine the column vectors representing the states |+x) and |—x) using the 
states |+y) and |—y) as a basis.

2.5. What is the matrix representation of Jz using the states |+y) and |—y) as a 
basis? Use this representation to evaluate the expectation value of Sz for a collection 
of particles each in the state |—y).

2 .6 . Evaluate fi(0j)|+z), where fi(0j) =  e~,Jye/h is the operator that rotates kets 
counterclockwise by angle 0 about the y axis. Show that f l ( f  j)|+ z) =  |+x). Sug-

15 In general, there are an infinite number of sets of basis states that may be used to form 
representations in matrix mechanics. For example, in addition to the states |± z), the states |± x )  
can be used as a basis to represent states and operators for sp in-| particles. However, since |± x ) 
are not eigenstates of Jz, the matrix representation of this operator using these states as a basis is 
not diagonal, as (2.100) shows.

diagonal with the eigenvalues forming the diagonal matrix elements: 1 5

(2.150)
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gestion: Express ticket |+z) as a superposition of the kets |+y) and |—y) and take\  *
advantage of the fact that / J i y )  =  (± f t / 2 )|±y); then switch back to the |+ z)- |—z) 
basis.

2.7. Work out the matrix representations of the projection operators P+ = |+z) (+z| 
and P_ = |—z)(—z| using the states |+y) and |—y) of a spin-^ particle as a basis. 
Check that the results (2.51) and (2.52) are satisfied using these matrix representa­
tions.

2 .8 . The column vector representing the state | VO is given by

Using matrix mechanics, show that |V0 is properly normalized and calculate the 
probability that a measurement of Sx yields fi/2. Also determine the probability that 
a measurement of Sy yields h j2.

2.9. Suppose in a two-dimensional basis that the operators A and B sire represented 
by the 2  x 2  matrices

Show that (AB )t =  B^A*.

2 .1 0 . Determine the matrix representation of Jx in the Sz basis. Suggestion: Start 
with the matrix representation of the operator Sx using the states

as a basis and then transform to the basis.

2 .1 1 . The column vector representing the state | VO is given by

Use matrix mechanics and the result of Problem 2.10 to determine (Sv) for this state.

2.12. A photon polarization state for a photon propagating in the z direction is 
given by



(a) What is the probability that a photon in this state will pass through an ideal 
polarizer with its transmission axis oriented in the y direction?

(b) What is the probability that a photon in this state will pass through an ideal 
polarizer with its transmission axis y' making an angle 4> with the y axis?

(c) A beam carrying N  photons per second, each in the state |0 ) , is totally 
absorbed by a black disk with its normal to the surface in the z direction. 
How large is the torque exerted on the disk? In which direction does the 
disk rotate? Reminder: The photon states | R) and |Z_) each carry a unit h of 
angular momentum parallel and antiparallel, respectively, to the direction of 
propagation of the photons.

(d) How would the result for each of these questions differ if the polarization state 
were
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that is, the in the state \r//) is absent?

2.13. A system of N ideal linear polarizers is arranged in sequence, as shown in 
Fig. 2.13. The transmission axis of the first polarizer makes an angle of 4>/N with 
the y axis. The transmission axis of every other polarizer makes an angle of 4>/N 
with respect to the axis of the preceding one. Thus, the transmission axis of the final 
polarizer makes an angle 0  with the y axis. A beam of y-polarized photons is incident 
on the first polarizer.

(a) What is the probability that an incident photon is transmitted by the array?
(b) Evaluate the probability of transmission in the limit of large N.
(c) Consider the special case with the angle 0  =  90°. Explain why your result is 

not in conflict with the fact that (x\y) =  0 . 1 6

(a) Determine a 2 x 2 matrix § that can be used to transform a column vector 
representing a photon polarization state using the linear polarization vectors 
|x) and |y) as a basis to one using the circular polarization vectors |R) and 
|/.) as a basis.

(b) Using matrix multiplication, verify explicitly that the matrix § that you found 
in (a) is unitary.

16 A nice discussion of the quantum state using photon polarization states as a basis is given 
by A. P. French and E. F. Taylor, An Introduction to Quantum Physics, Norton, New York. 1978, 
Chapters 6 and 7. Problem 2.9 is adapted from this source.

2.14.
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Figure 2.13 An array o f N  linear polarizers.

2.15. Evaluate the matrix elements

/ ( x |7 z|x> (x|7,|y) \

M y l-W  ( y \ j z\ y ) )

by expressing the linear polarization states |x) and |y) in terms of the circular 
polarization states |R) and |/_). Compare your result with that given in Example 2.8.

2.16. Use both the matrix representations of the angular momentum operator Jz from 
Example 2.8 to determine the expectation value of the angular momentum for the 
photon state a\R) +  b\L).

2.17. Use the matrix representation of the rotation operator R(<f>k) in the |x)-|y) 
basis as given in (2.113) to establish that the photon circular polarization states 
(2.114), expressed as column vectors in the |x)-|y) basis, sire eigenstates of the 
rotation operator with the eigenvalues that appear in (2.116) and (2.119).

2.18. Construct projection operators out of bras and kets for x-polarized and y- 
polarized photons. Give physical examples of devices that can serve as these pro­
jection operators. Use (a) the properties of bras and kets and (b) the properties of 
the physical devices to show that the projection operators satisfy P^ = Px, P^ = Py, 
and PXPV = PVPX = 0.

2.19. Show that Jz =  — h\L)(L\ for photons.

2 .2 0 . What is the probability that a right-circularly polarized photon will pass 
through a linear polarizer with its transmission axis along the x' axis, which makes 
an angle <p with the x axis?
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2 .2 1 . Linearly polarized light of wavelength 5890 A is incident normally on a 
birefringent crystal that has its optic axis parallel to the face of the crystal, along 
the x axis. If the incident light is polarized at an angle of 45° to the x and >• axes, 
what is the probability that the photons exiting a crystal of thickness 1 0 0 . 0  microns 
will be right-circularly polarized? The index of refraction for light of this wavelength 
polarized along y (perpendicular to the optic axis) is 1 . 6 6  and the index of refraction 
for light polarized along x (parallel to the optic axis) is 1.49.

2.22. A beam of linearly polarized light is incident on a quarter-wave plate with its 
direction of polarization oriented at 30° to the optic axis. Subsequently, the beam 
is absorbed by a black disk. Determine the rate at which angular momentum is 
transferred to the disk, assuming the beam carries N photons per second.

2.23.
(a) Show that if the states \an) form an orthonormal basis, so do the states 0 \an), 

provided U is unitary.
(b) Show that the eigenvalues of a unitary operator can be written as e,e.

2.24. The Hermitian operator A corresponding to the observable A has two eigen­
states |ai) and \a2) with eigenvalues a ) and a2, respectively. Assume a i ^  a2. Show 
that A can be written in the form

A = a [\a[)(al\ + a2\a2)(a2\

and that

W\A\x/,) = {A)



CHAPTER 3

Angular Momentum

In this chapter we will see that the order in which we carry out rotations about differ­
ent axes matters. Therefore, the operators that generate rotations about these different 
axes do not commute, leading to commutation relations that may be viewed as the 
defining relations for the angular momentum operators. We will use these commuta­
tion relations to determine the angular momentum eigenstates and eigenvalues. We 
will also see that the spin-^ states that have occupied much of our attention so far 
appear as a particular case of this general analysis of angular momentum in quantum 
mechanics.

3.1 Rotations Do Not Commute and Neither Do the Generators

Take your textbook and set up a convenient coordinate system centered on the book, 
as shown in Fig. 3.1. Rotate your text by 90° about the x axis and then rotate it by 90° 
about the y axis. Either note carefully the orientation of the text or, better still, borrow 
a copy of the text from a friend and perform the two rotations again, but this time 
first rotate about the y axis by 90° and then about the x axis by 90°. The orientations 
of the two texts are different. Clearly, the order in which you carry out the rotations 
matters. We say that finite rotations about different axes do not commute.

In Section 2.7 we determined the matrix § that transforms a basis set of polar­
ization states to another set that sire related to the initial set by a rotation by angle 0  

counterclockwise about the z axis. The matrix (2.112) is also the matrix that is used 
to rotate the components of an ordinary vector in the x-y plane. Our familiarity with 
this example makes it a good one to use to analyze in more detail what happens when 
we make rotations about different axes. Rather than working directly with the actual 
operators that perform these rotations in our quantum mechanical vector space, we 
will initially work in a specific representation and infer from the behavior that we 
see some fundamental properties about the operators themselves. The results we are

75
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Figure 3.1 Noncommutativity o f rotations. A book, shown 
in (a), is rotated in (b) by 90° around the x  axis, then 90° about 
the y  axis; in (c) the order o f the rotations is reversed.

y z x

Figure 3.2 Rotating vector A into vector A' by angle 0  counterclockwise 
about (a) the z axis, (b) the x  axis, and (c) the y  axis. For simplicity, only 
the components o f the vector in the plane perpendicular to the axis o f  
rotation are shown.

interested in depend on the three-dimensional structure of space and are properties 
that manifest themselves in all nontrivial representations.

Let’s consider an ordinary three-dimensional vector A and a vector A' that is 
obtained by rotating A counterclockwise by an angle <p about the z axis. How are 
the components of A and A' related to each other? Denoting by 0 the angle between 
the projection of A in the x~y plane and the x axis, as in Fig. 3.2a, we have

A'x = y A2x +  A2y cos(0 +  0) = ^  A2 +  A2 (cos 0  cos 0 — sin 0  sin 0)

= Ax cos0  — A v sin <p (3.1a)

A 'y = yjAl  +  A v sin(0 +  0 )  =  yJAl  +  Al  (sin 0  cos 0 +  sin 0 cos 0 )

=  Ax sin 0  +  Ay cos 0 

K  = Az

(3.1b)

(3.1c)
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or, in matrix form, *

( K ) /  cos 0  — sin 0  0 \
( A x \

= sin 0  cos 0  0 Ay

\ A ' Z) {  0 0 1 ) \ A J

Thus the matrix that rotates the vector by angle 0  counterclockwise about the z axis 
is given by

/  COS 0 — s in  0 ° \
§(0 k) = s in  0 COS 0 0

I o 0 1 /

The 2 x 2  matrix in the upper left-hand comer is just the matrix (2.112). Because 
we are dealing here with a vector that has three components, the rotation matrix is 
a 3 x 3 matrix instead of the 2 x 2 matrix that we found for rotating polarization 
states. The additional elements in this matrix (3.3) simply show that the component 
of the vector in the z direction is unaffected by a rotation about the z axis.

We consider the special case where the angle is a small angle A0 and retain terms 
in the Taylor series expansions for sin A0  and cos A0  through second order. It is 
necessary to work to at least this order to see the noncommutativity of the rotations. 
Thus

§(A0k) =

/  1 -  A 02/2  

A 0

V 0

—A0  0 \

1 -  A 02/2  0

0  1 /

(3.4)

From Fig. 3.2b we see that for a rotation about the x axis by angle 0, the matrix 
for the rotation can be obtained from the matrix (3.3) by letting x —► y, y —► z, and 
z —► x, that is, by a cyclic substitution. Therefore, the rotation matrix is

and consequently

( \ 0 °  \
§(0 i) = ‘- 0 COS 0 — sin 0

\ o sin 0 cos 0  /

/ I 0 0

§(A0i) = 0 1 -  A 02/2  — A0

\ 0 A 0 1 -  A 02/2  /

(3.5)

(3.6)

Finally, we can obtain the matrix for a rotation about the y axis from the matrix for 
a rotation about the x axis by another cyclic substitution (see Fig. 3.2c). Thus

/  1 -  A02/2  0 A0 \

0  1 0

 ̂ - A 0 0 1 -  A 0 2 / 2 )
§(A0j) = (3.7)
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We now consider a rotation by A<f> about the y axis followed by a rotation by the 
same angle about the x axis. We subtract from it a rotation about the x axis followed 
by a rotation about the y axis. Multiplying the matrices (3.6) and (3.7), we obtain

( °
— A < p 2  0 \

§(A0i)§(A0j) -  §(A0j)§(A0i) = A02 0 0

1 o 0 0 /

=  §(A 0 2 k) — I (3.8)

where in the last step we have taken advantage of the explicit form of the matrix 
(3.4) when the rotation angle is A 0 2  and terms through order A<f>2 are retained.

From Section 2.5 we know that these S-matrices sire the matrix representations 
of the rotation operators. For example, the matrix (3.3) is the representation of the 
rotation operator R(<f>k) in a particular basis . 1 Equation (3.8) shows that when we 
retain terms through second order in A0 , the operators themselves do not commute. 
Recall from (2.32) that the operator that rotates states by angle <p about the z axis is

R(<t> k) = e~il-4>/h (3.9)

where Jz is the generator of rotations. We can think of this as a special case of the 
more general rotation operator

R((f> n) = e~i3'n<p/h (3.10)

that rotates states by angle <p about the axis defined by the unit vector n. Thus the 
operators that rotate states by angle 4> about the x axis and the y axis are given by

R(<f> i) = e~iJ**/h and R(<f>j) = e~iJy4>/h (3.11)

with generators Jx and Jy, respectively. Thus, if we take the angle of rotation to be 
the small angle A<p and expand the rotation operators through second order in A<f>, 
(3.8) tells us that

1 Although we have phrased our discussion so far in terms of how ordinary vectors change 
under rotations, we are effectively using spin-1 states like the ones we saw in Section 2.7 as a 
basis, but with three states instead of just the two states that are necessary to describe photon 
polarization. We argued in that section that the way the photon polarization states changed under 
rotation told us that photons are spin-1 particles. If photons traveling in the z direction were to 
have a |z) polarization state as well as |x) and |y), this |z) polarization state would not be changed 
by performing a rotation about the z axis, and the matrix representation of the rotation operator 
R(<f>k) using the |x), |y), and |z )  states as a basis would look like (3.3) instead of (2.113). Later 
in this chapter we will see how spin-1 states do form a three-dimensional basis. Again, particles 
like photons that move at c require special treatment.
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iJxA <f> _  1 /  Jx a<A
h 2 \  h )

 ̂ * 2

1 /  JyA<p\
~ h  2  \  h /

iJyA<f> \ / j yA<f>\ j 

h 2  \  h )
iJxA<f> 1 /  /cA 0

_ ft 2  \  h

iJzA<f>2
ft

-  1 (3.12)

The lowest order nonvanishing terms involve A(f>2. Equating these terms, we obtain

Jx Jy — JyJx = i hJz (3.13)

or

[Jx, Jy\ = i ftjz (3.14a)

where the left-hand side of the equation is called the commutator of the two 
operators Jx and Jv. The commutator of two operators is just the product of the 
two operators subtracted from the product of the two operators with the order of 
the operators reversed. Notice how Planck’s constant enters on the right-hand side 
of (3.14a).

If we were to repeat this whole procedure for rotations about the y and z axes 
and for rotations about the z and x axes, we would obtain two other commutation 
relations related to (3.14a) by the cyclic permutation x —► y, y —► z, and z -* x:

[Jy, Jz] = ihJx (3.14b)

and

[Jz, Jx) = ihJy (3.14c)

It would be difficult to overemphasize the importance of these commutation 
relations. In Section 3.3 we will see that they alone are sufficient to determine the 
eigenstates and the eigenvalues of the angular momentum operators. So far, our 
arguments to establish that these generators of rotations should be identified with 
the angular momentum operators sire probably at best suggestive. The proof is in the 
results and the comparison with experiment.

Later we will see that the orbital angular momentum operators

L =  r x p  (3.15)

also obey these same commutation relations, that is, for example.

[Lx, Ly] = ihLz (3.16)
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However, we have not introduced angular momentum operators through (3.15), but 
rather simply as the generators of rotations. Although this approach may seem more 
abstract and initially less physical, it is also more general and, in fact, essential. In 
Chapter 9 we will see that the eigenvalues of orbital angular momentum, as defined 
by (3.15), do not include the half-integral values that characterize spin-^ particles 
such as electrons, protons, neutrons, and neutrinos.

3.2 Commuting Operators

The commutation relations of the generators of rotations show that the generators 
of rotations about different axes do not commute with each other. As we saw in 
Chapter 2, these generators are Hermitian operators. Before turning our attention 
toward solving the angular momentum eigenvalue problem, we need to ask what 
happens when two operators do commute. Consider two such linear Hermitian 
operators A and B that satisfy

[A, B] = A B — BA = 0 (3.17)

Suppose there exists only a single state |a) that is an eigenstate of A with eigen­
value a:

A\a)=a\a)  (3.18)

If we apply the operator B to (3.18), we obtain

BA\a) = Ba\a) (3.19)

On the left-hand side we take advantage of (3.17) and on the right-hand side we take 
advantage of the fact that B is a linear operator to write

AB\a)=aB\a)  (3.20a)

or

A(B\a)) = a(B\a)) (3.20b)

where we have inserted the parentheses to isolate the state B\a) on both sides. 
Equation (3.20) says that the state B\a) is an eigenstate of the operator A with 
eigenvalue a. Since we have presumed there is only one such state, we conclude 
that

B\a) = b\a) (3.21)

where b is a constant, since if |a) satisfies (3.18), so does b\a) for any constant b. 
But (3.21) says that |a) is an eigenstate of B as well with eigenvalue b. Therefore,
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E = pVlm  

P
E ■=pl!2m 
---------------- •

~P
Figure 3.3 A free particle with momentum p  has the 
same energy as one with momentum —p.

we can relabel the state |a) as \a, b) to show both of the eigenvalues and say that 
A and B have the eigenstate |a, b) in common. An example of a state that can be 
labeled by two eigenvalues is the state | E, p) of a free particle in one dimension, 
where E is the energy and p is the momentum of the particle.

If there is more than one eigenstate of the operator A with eigenvalue a, we say 
that there is degeneracy. Our proof has established that each eigenstate of A is also 
an eigenstate of B for those states that are not degenerate. If there is degeneracy, 
one can always find linear combinations of the degenerate eigenstates of A that 
are eigenstates of the Hermitian operator B. Thus two Hermitian operators that 
commute have a complete set of eigenstates in common. This result follows from the 
fundamental spectral theorem of linear algebra. We will not prove it here, but we will 
have a number of opportunities in later chapters to verify that it holds in special cases. 
In fact, the example of the one-dimensional free particle can serve as an illustration, 
since for a particular energy E = p2/2m there is two-fold degeneracy: the states 
\E, p) and |E, —p) have the same energy but momenta p and — p, respectively, 
corresponding to a particle moving to the right or the left (see Fig. 3.3). Note that 
you can certainly form states that are superpositions of the states | E, p) and | E, —p) 
(such as standing waves), so states with a definite energy need not have a definite 
momentum.

| EXAM PLE 3.1 Equation (2.113) gives the matrix representation
I

s = /(x\R(<pk)\x) <x|«(0 k ) |y > \ =  / c o s *  - s int f>\

| \ ( y | r t ( 0 k)|x) (y\R((f>k)\y))  \  sin 0  cos 0  /
I „ *
| of the rotation operator R(<j>k) using the linear polarization vectors |x) and 
| |y) for photons as a basis. Example 2.8 shows that
j

| in the same basis. Show that these operators commute and therefore have
) eigenstates in common. What are these eigenstates and what are the matrix
1 * *
| representations for R(<f>k) and Jz using these eigenstates as a basis?
i
! SOLUTION It is straightforward to verify that these operators commute:

I /  cos <p — sin 0 \  / 0  — i \  / 0  — i \  / c o s 0  — sin 0  \  ^

\  sin 0  cos 0  /  \  i 0  /  \  / 0  /  \  sin 0  cos 0  /
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; We know from Section 2.7 that the eigenstates of Jz sire the circular polar-
j
i ization states |R) and |Z_) with eigenvalues fi and —fi, respectively. Conse- 
I quently, as given in Example 2.8,

| / ( R \ J Z\R) (R\Jz\L)\ = / n  0 \

| V (L\JZ\R) (L\JZ\L)J  VO - h )
i
| Since R(<f>k) =  we also see that

j /  (R\R(<f>k)\R) (R\R(<f>k)\L) \  =  /  e ~ ^  0 \

j V {L\R(<t>k)\R) {L\R(<t>k)\L) )  V O  e * )

I consistent with the fact that these two operators have the eigenstates |R) and 
| |Z_) in common. Using these eigenstates as a basis, the matrix representations
) of both operators are diagonal with the corresponding eigenvalues as the 
f diagonal matrix elements.

3.3 The Eigenvalues and Eigenstates of Angular Momentum

Although the commutation relations (3.14) show us that the generators of rotations 
about different axes do not commute with each other, the operator

J2 = j  • j  = PX + J ' l  + J 1z (3.22)

does commute with each of the generators. In order to verify this, we choose Jz, 
the generator of rotations about the z axis, and use the identity (see Problem 3.1)

[A, BC] = B[A, C] +  [A, B]C (3.23)

to obtain3

[i2, i ;  + P  + P;] =  [ I ,  J;] + (4  j-1 + [iz, p \

—  / t [ 7 r ,  J x ] + [ J z , J x ]J.x “b j y [ j z . j y \  + [7-, yvJ7v

=  i h U x J y  +  J y J x  -  JyJ . x  -  j x j y ) =  0 (3.24)

2 The operator J =  Jxi + JYj  +  J.k is a vector operator. For vector operators such as j  we 
use the notation j 2  =  (Jxi +  7 J  +  7zk) • (Jxi +  Jyj  +  Jzk) =  j * + J2 +  j}.

3 We will use commutator identity (3.23) as well as its analogue [A B , C J=  A[B , C ]+  
[A, C)B often when evaluating a commutator that involves a product of operators. In general, 
this is much easier than starting by expanding the commutator using the defining relationship 
[A, BC] =  ABC — BCA.  You are encouraged to work out Problem 3.1 so you feel comfortable 
with these commutator identities.
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Because the operator J 2  commutes with Jz, these operators have simultaneous 
eigenstates in common. We label the kets \X, m ), where

J2\X, m) = Xfi2\X, m) (3.25a)

JZ\X, m) = mh\X, m) (3.25b)

We have explicitly included the dimensions of the operators in the factors of h so 
that X and m are dimensionless. Thus |A., m) is a state for which a measurement of 
the z component of the angular momentum yields the value mh and the magnitude 
squared of the angular momentum is Xh2.

We can see that X > 0, as we would expect physically since X specifies the 
magnitude squared of the angular momentum in the state | A., m). Consider

(X, m\J2\X, m) = Xh2(X, m\X, m) (3.26)

Like all physical states, the eigenstates satisfy (A,m|A,m) =  l . A typical term in 
the left-hand side of (3.26) is of the form

(X, m) = W \ f )  (3.27)

where we have defined 7JA, m) =  |V0, and (VM =  (A., m\Jx since Jx is Hermitian. 
Although the ket | VO is not normalized, we can always write it as | VO =  c\(p), where 
c is a complex constant (that must have the dimensions of h) and \q>) is a physical 
state satisfying (<p\<p) = 1. In other words, the action of the operator Jx on a ket vector 
must yield another ket vector that belongs to the vector space. 4  Since (rfr \ c*{(p|,
we see that (\f/ |V0 =  c*c(<p|̂ >) > 0, where the equality would hold if c = 0. Our 
argument that (3.27) is positive semidefinite holds for each of the three pieces [see 
the form (3.22) of J 2] on the left-hand side of (3.26), and therefore X > 0.

AN EXAMPLE: SPIN 1 t
To illustrate what we have discovered so far and suggest the next step, let’s take the 
specific example involving the following three 3 x 3  matrices:

_h_
V 2

( 0  1 

1 0  

\ o  i

° \
i

0 /

n_
V 2

/ 0  - i 0  \ ( i 0 0  \
i 0 —i Jz —► h 0 0 0

^ 0  / 0  ) \ 0 0 - 1 /

(3.28)

4 Because Jx is the generator of rotations about the x axis, the ket (1 — iJxd<f>/h)\X, m) is just 
the ket that is produced by rotating the ket \X, m) by angle d<f> about the x axis. Thus the ket |V0 
can be viewed as a linear combination of the rotated ket and the ket |X, m),  that is, a superposition 
of two physical states.
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For now, don’t worry about how we have obtained these matrices. Later in this 
chapter we will see how we can deduce the form of these matrices (see Example 3.3 
and Problem 3.14). In the meantime, let’s see what we can leam from the matrices 
themselves.

To begin, how can we be sure that these three matrices really represent angular 
momentum operators? Following our earlier discussion, it is sufficient to check (see 
Problem 3.13) that these matrices do indeed satisfy the commutation relations (3.14). 
We next calculate

j 2 = j  - j = 3 ] + py +  ; 2

/ I 0 ° \
0 1 0 (3.29)

\ 0 0 l )

We see explicitly that J 2  is just a constant times the identity matrix and thus com- 
mutes with each of the components of J. The operator Jz is diagonal as well, sug­
gesting that the matrix representations (3.28) sire formed using the eigenstates of 
Jz as well as J 2  as a basis. The column vectors representing these eigenstates arc 
given by5

/  1 \ ( 0 \ (°\
0 1 and I 0

\ o J \ o j \ 1  )

which have eigenvalues ft, 0 , and —ft, respectively, as can be verified by operating 
on them with the matrix representing Jz. For example,

1 0 0 \ / 1 \ ( 1 \
0 0 0 0 = h 0
0 0 - 1 ) \ o j w

(3.31)

Similarly, we see that each of these states is an eigenstate of J 2  with eigenvalue 2ti1.
Since the matrix representations of Jx and Jy are not diagonal, the states (3.30) 

are not eigenstates of these operators. It is straightforward to evaluate the action of 
the operators Jx and Jy on the basis states. There is, however, a linear combination 
of these two operators, namely,

Jx +  I Jy
( 0 1 ° \

y / l t i 0 0 1

\ 0 0 0 /

(3.32)

whose action on the basis states exhibits an interesting pattern. Applying this oper­
ator to the basis states (3.30), we obtain

5 Compare these results with (2.70), (2.71), and (2.72) for a spin-^ particle.
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i ( 0 1 o \ ( 0 \ ( 0 \

y/2ti 0 0 1 0 = y / lh 1
U 0 o ) w
( 0 1 ° \ ( 0 \ /  1 \

y/2ti 0 0 1 1 = y/2h 0

\ 0 0 o j \ o j \ 0  /
( 0 1 ° \

( l ) ( 0 \
V i n 0 0 1 0 = 0

u 0 o j \ 0 y U /

according to (3.33), the operator Jx +  i Jy acting on the

(3.33)

(3.34)

(3.35)

—h for Jz turns it into a state with eigenvalue 0, multiplied by y/lft. Similarly, as 
(3.34) shows, when the operator acts on the state with eigenvalue 0 for Jz, it turns it 
into a state with eigenvalue h, multiplied by y/lft. This raising action terminates 
when the operator Jx +  i JY acts on the state with eigenvalue fi, the maximum 
eigenvalue for Jz. See (3.35). It can be similarly verified that the operator

( 0 0 ° \
V i n i 0 0

\ 0 1 0 /

(3.36)

has a lowering action when it acts on the states with eigenvalues h and 0 , turning 
them into states with eigenvalues 0 and —h, respectively. In this case, the lowering 
action terminates when the operator (3.36) acts on the state with eigenvalue —h, the 
lowest eigenvalue for Jz.

RAISING AND LOWERING OPERATORS
Let’s return to our general analysis £>f angular momentum. The example suggests 
that it is convenient to introduce the two operators

J± = Jx ± i J y (3.37)

in the general case. Notice that these sire not Hermitian operators since

j ' l  = j ] + ( - i ) / J  = j x -  iJy =  j_  (3.38)

The utility of these operators derives from their commutation relations with Jz:

[Jz, 4 ]  =  [Jz, Jx ±  iJy] = ifijy ±  i { - ihJx) = ±hJ± (3.39)

To see the effect of J+ on the eigenstates, we evaluate JZJ+\X, m). We can use the 
commutation relation (3.39) to invert the order of the operators so that Jz can act
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directly on its eigenstate \X, m). However, since the commutator of Jz and J+ is not 
zero but rather is proportional to the operator J+ itself, we pick up an additional 
contribution:

Jzj + |A., m) = ( j+Jz +  fiJ+)|A., m)

=  (J+mfi +  fiJ+)\X, m)

=  (m +  \)hJ+\X, m) (3.40a)

Inserting some parentheses to help guide the eye:

JZ(J+\X, m » =  (m +  \)h(J+\X, m » (3.40b)

we see that 7+|A., m) is an eigenstate of Jz with eigenvalue (m +  1 )fi. Hence J+ is 
referred to as a raising operator. The action of J+ on the state \X,m) is to produce 
a new state with eigenvalue (m +  1 )h.

Also

JZJ-\X, m) =  (J_JZ — hJ_)\X, m)

=  (J_mh — HJ_)\X, m)

= (m — \)h.J_\X, m) (3.41a)

Again, inserting some parentheses,

JZ(J_\X, m)) = (m — \)fi(J_\X, m)) (3.41b)

showing that 7_|A., m) is an eigenstate of Jz with eigenvalue (m — 1 )h\ hence J_ 
is a lowering operator. Notice that since J+ and J_ commute with J2, the states 
J±\X, m) are still eigenstates of the operator J2 with eigenvalue Xfi2:

J2(7± |A., m)) = J±J2|A, m) = Xfi2(J±\X, m)) (3.42)

THE EIGENVALUE SPECTRUM

We now have enough information to determine the eigenvalues X and m, because 
there sire bounds on how far we can raise or lower m. Physically (see Fig. 3.4), we 
expect that the square of the projection of the angular momentum on any axis should 
not exceed the magnitude of J2 and hence

m2 < X (3.43)

Formally, since

{X, m\(J2 +  y 2 )|A., m) > 0 (3.44)
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z

Figure 3.4 The projection o f the angular momentum on the 
axis never exceeds the magnitude o f the angular momentum. 
Caution: This is a classical picture; the angular momentum  
cannot point in any definite direction.

we have

(A., m |(J 2  — J 2) |A, m) = (A — m2)h2(A, m|A, m) > 0 (3.45)

establishing (3.43).
Let’s call the maximum m value j .  Then we must have

J+ | A , » = 0  (3.46)

since otherwise J+ would create a state |A, j  +  1), violating our assumption that j  is 
the maximum eigenvalue for 7, . 6  Using

y_ J+ =  (Jx — i Jv)( jX +  iJy)

= J 2 + J 2 + i[JXi Jy]

=  j  2 - J 2 - h J z (3.47)

we see that

J-J+ |X, j) = (J 2  -  / 2  -  hJz)\\, j )

= & - j 2 - m 2\ l . j )  = 0 (3-48)

orA =  j ( j  +  1 ).
Similarly, if we call the minimum m value j \  then

7_|A, j') = 0 (3.49)

and we find that

/ )  =  y 2  -  y 2  +  hJz)\\ ,  j')

= a  -  j 12 + j ') n 2ia, / )  =  o (3.50)

6 Equation (3.35) demonstrates how this works for the special case of spin I.
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j

j  ~ I
7 - 2

--------------------- - j  + 2

j  +  ̂ Figure 3.5 The possible m values for a fixed magnitude 
----------------------- j  y / j ( j  +  1)^ o f the angular momentum.

In deriving this result, we have used

J+J- = (Jx +  iJy)(Jx -  iJy)

= P  + i )  -  i[ i„  y v]

= j 2 - J 2 + hJz (3.51)

Thus X = j a — j'. The solutions to the equation j 2  +  j  = j ' 2 — j \  which results 
from setting these two values of X equal to each other, sire j '  = — j  and j '  = j  +  1. 
The second solution violates our assumption that the maximum m value is j .  Thus 
we find the minimum m value is — j.

If we start at the m = j  state, the state with the maximum m, and apply the 
lowering operator a sufficient number of times, we must reach the state with m = — j,  
the state with the minimum m. If this were not the case, we would either reach a state 
with an m value not equal to — j  for which (3.49) is satisfied or we would violate 
the bound on the m values. But (3.49) determines uniquely the value of j '  to be — j. 
Since we lower an integral number of times, j  — j '  = j  — (—j ) =  2j = an integer, 
and we deduce that the allowed values of j  are given by

j = 0 ' '■ i 2’ ” - (3-52)

As indicated in Fig. 3.5, the m values for each j  run from j  to — j  in integral steps:

m = j , j  -  1, j  -  2.........- j  +  1, -  j  (3.53)
“““““““

2 j  + 1 states
Given these results, we now change our notation slightly. It is conventional to 

denote a simultaneous eigenstate of the operators J 2  and Jz by \j, m) instead of 
|A., m) = | j (j  +  1), m). It is important to remember in this shorthand notation that

J 2|j,  m) = j ( j  +  \)fi2\j, m) (3.54a)

as well as

Jz\j, m) = mh\ j t m) (3.54b)
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i

m = 0
m =  1/2 

m = -1 /2

m = 1 

m -0  
m = - 1

m = 3/2 

m = 1 / 2  

m = - 1 / 2  

m = -3/2

(a) (b) (c) (d)

Figure 3.6 The m values for (a) spin 0, (b) spin (c) spin 1, and (d) spin | .

Let’s examine a few of these states, for which the m values sire shown in Fig. 3.6.

1. The j  = 0 state is denoted by |0, 0). Since the magnitude of the angular 
momentum is zero for this state, it is not surprising that the projection of the 
angular momentum on the z axis vanishes as well.

2. The j  = 5  states sire given by |^, and \j,  — j).  Note that the eigenvalues 
of Jz for these states sire fi/2 and —h/2, respectively. These states sire just the 
states |+z) and |—z) that have concerned us for much of Chapters 1 and 2. 
We now see the rationale for calling these states spin-^ states: the constant j  
takes on the value However, the magnitude of the spin of the particle in

these states is given by +  \ )h  = y/ lh/2.

3. The angular momentum j  = 1 states are denoted by 11, 1), 11, 0), and 11, — 1). 
These spin-1 states are represented by the column vectors (3.30) in the example 
of this section. The eigenvalues of Jz arc h , 0, and —h, which sire the diagonal 
matrix elements of the matrix representing Jz in (3.28). The magnitude of the 
angular momentum for these states is given by V K l +  1 ) ^ =  > / 2  fi.

4. There are four j  = \  states: | | ,  | ) ,  | | ,  ^), | | ,  —̂ ), and | | ,  —|) .  The magni­

tude of the angular momentum is I +  1 ) h = -J\5 fi/2.
f"

As these examples illustrate, the magnitude y / j ( j  +  1) fi of the angular momen­
tum is always bigger than the maximum projection j  fi on the z axis for any nonzero 
angular momentum. In Section 3.5 we will see how the uncertainty relations for an­
gular momentum allow us to understand why the angular momentum does not line 
up along an axis. I

I EXAMPLE 3.2 An atom passes straight through an SGz device without 
| deflecting. What can you deduce about the angular momentum of the atom?

[ SOLUTION Since the atom is not deflected, it must have Jz =  0. Thus the 
| atom has an integral value j  for its angular momentum, since only for integral
| values of j  is m = 0 one of the eigenvalues for Jz.
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3.4 The Matrix Elements of the Raising and Lowering Operators

We have seen in (3.40) and (3.42) that the action of the raising operator J+ on a state 
of angular momentum j  is to create a state with the same magnitude of the angular
momentum but with the z component increased by one unit of ft:

J+\j, m) = c+h\j , m +  1) (3.55)

while the action of the lowering operator is

J-\j ,  m) = c_h \ j , m — 1) (3.56)

It is useful to determine the values of c+ and c_. Taking the inner product of the 
ket (3.55) with the corresponding bra and making use of (3.38), we obtain

0 ‘, m\J_J+\j, m) = c*+c+h2{j , m +  1|j,  m +  1) (3.57)

Substituting (3.47) for the operators J_J+, we find

(j* m \ ( 5 2 ~  Jz -  hJ z)\j* m ) =  i j ( j  +  1 ) - m 2 -  m]fi2{ j ,  m \ j , m)

=  c+c+h2(j, m + \\j, m + \) (3.58)

Assuming the angular momentum states satisfy {j, m\j , m) = {j , m +  10‘, m +  1), 
we can choose c+ = y / j( j  +  1 ) — m(m +  1 ), or

7+0, m) =  y / j( j  +  1) -  m(m +  1 ) h\j, m +  1 ) (3.59)

Note that when m = j ,  the square root factor vanishes and the raising action termi­
nates, as it must. Similarly, we can establish that

J-\ j ,  m) =  y j j ( j  +  1) -  m(m -  1 ) h\j, m -  1 ) (3.60)

for which the square root factor vanishes when m = — j ,  as it must.
These results determine the matrix elements of the raising and lowering operators 

using the states \j, m) as a basis:

O’, m'\J+\j> m) =  y/jU  +  1 ) -  m(m +  1 ) h {j , m'\j , m +  1 )

=  y/ jU  +  1) -  rn(m +  1 ) h 5w/ , n + 1  (3.61)

and

(j, m' \J_\j , m) = y / j ( j  +  1) -  m{m -  1) fi {j , m'\j , m -  1)

=  y / j i j  +  1) -  m(m -  1) h (3.62)

In obtaining these matrix elements, we have made use of (j , m'\j, m) = 8,n> m, since 
the amplitude to find a state having Jz = mfi with Jz = m'fi, m! ^  m, is zero. In
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Section 3.6 we willfcee how useful the matrix elements (3.61) and (3.62) sire for 
obtaining matrix representations of Jx and Jy.

| EXAMPLE 3.3 Obtain the matrix representation of the raising and lower­
ing operators using the j  = 1 states as a basis.

SOLUTION The three j  = 1 basis states are 11) =  |1, 1), |2) =  |1, 0), and 
|3) =  11, —1). Using (3.61), we see that 7+ |l, 1) =  0, 7+ |l, 0) =  y/l  h\\, 1), 

; and 7+ |l, — 1) =  y/2fi\\, 0). Thus the only nonzero matrix elements are 
(1|7+|2) =  ( 1 , l|i+|l,0> =  V 2 ft in the first row, second column and 
(2 |/+ |3) =  (i, 0|y+ |i, —i) =  \ f i h  in the second row, third column:

( 0  1 0 \  

J+ ----- <- V2h 0 0 !
J-  basis

\ 0  0  0 /

Since J_ = y+, the matrix representation of 7_ is the transpose, complex 
conjugate of the matrix representation for J+:

/ 0  0  0 \

L -----  ̂V 2h i o o
Jr basis

Vo 1 0 /

j These results are in agreement with (3.32) and (3.36), showing that the 3 x 3 
i matrix representations in Section 3.3 are indeed those for j  = 1.
i

3.5 Uncertainty Relations and Angular Momentum

In solving the angular momentum problem in Section 3.3, we took advantage of the 
commutation relation (3.24) to form simultaneous eigenstates of J2 and Jz. Since 
[J2, / v] =  0 as well, we can also form simultaneous eigenstates of J2 and Jx. For 
the j  = j  sector, the two eigenstates would be the states |+x) and |—x) that we 
discussed in the earlier chapters. We did not, however, try to form simultaneous 
eigenstates of J2, Jx, and Jz. We now want to show that such simultaneous eigenstates 
are prohibited by the commutation relations of the angular momentum operators 
themselves, such as

[Jx, Jy] = ifiJz (3.63)

This is why in Section 3.3 we chose only one of the components of J, together with 
the operator J2, to label the eigenstates.
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The commutation relation (3.63) is an example of two operators that do not 
commute and whose commutator can be expressed in the form

[A,B] = iC (3.64)

where A, B, and C are Hermitian operators. We will now demonstrate that a 
commutation relation of the form (3.64) implies a fundamental uncertainty relation. 
To derive the uncertainty relation, we use the Schwarz inequality

<a|a)</?|0>>|<a|0 ) | 2  (3.65)

This is the analogue of the relation (a • a)(b • b) > (a • b)2, familiar from the ordinary 
real three-dimensional vector space. See Problem 3.7 for a derivation of (3.65).

We substitute

\a) = ( A - { A ) M ) (3.66a)

\fi) = ( B - ( B ) M ) (3.66b)

into (3.65), where the expectation values

and

(A) = { f \ A \ f ) (3.67a)

{B) = { f \ B \ f ) (3.67b)

are real numbers because the operators are Hermitian. Notice that

(«l«) =  m *  -  M ))2|*> =  (A A)2 (3.68a)

W )  = W (B  -  <S»2W  =  (A fi ) 2  (3.68b)

where we have used the familiar definition of the uncertainty (see Section 1.4 or 
Section 1.6 ) and the fact that A and B sire Hermitian operators. The right-hand side 
of the Schwarz inequality (3.65) for the states (3.66) becomes

(a\fi) = W\{A -  (A)){B -  (B )M )  

For any operator O, we may write

A 6  +  6  -  f  i do  = ---------- + ------------ =  — +  —
2 2 2 2

(3.69)

(3.70)

where F = O +  O* and G = —i ( d  — & )  are Hermitian operators. If we take the 
operator O to be (A — (A))(B — (B)), we find

6 - 6 '  = [A, B] = iC (3.71)
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and therefore G = C  in (3.70). Thus

\ W ) \  = W )  +  l- { f \ c \ f )

m m ) \ 2 | m c m 2 > KO I2 (3.72)

where we have made use of the fact that the expectation values of the Hermitian 
operators F and C are real. Combining (3.65), (3.68), and (3.72), we obtain

(.AA)2(AB ) 2  > (3.73)

or simply

A A AB > l(C>| (3.74)

which is a very important result.
If we apply this uncertainty relation to the specific commutation relation (3.63), 

we find7

AJxAJy > ^ \ ( J z)\ (3.75)

This uncertainty relation helps to explain a number of our earlier results. If a spin-^ 
particle is in a state with a definite value of Jz, (Jz) is either h/2 or —h /2, which 
is certainly nonzero. But (3.75) says that AJX must then also be nonzero, and thus 
the particle cannot have a definite value of Jx when it has a definite value of Jz. 
We now see why making a measurement of Sz in the Stem-Gerlach experiments is 
bound to modify subsequent measurements of Sx. We cannot know both the x and 
the z components of the angular rqpmentum of the particle with definite certainty. 
We can also see why in general the angular momentum doesn’t line up along any 
axis: If the angular momentum were aligned completely along the z axis, both the x 
and y components of the angular momentum would vanish. We would then know all 
three components of the angular momentum, in disagreement with the uncertainty 
relation (3.75), which requires that both AJX and A Jy sire nonzero in a state with a 
definite nonzero value of Jz. Thus the angular momentum never really “points” in 
any definite direction.

7 In Chapter 6 we will see that the position and momentum operators satisfy

[x, px] =  ih

Thus (3.74) leads directly to the famous Heisenberg uncertainty relation Ax Apx > h/2  as well.
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3.6 The Spin-| Eigenvalue Problem

In this section we will see how we can use the results of this chapter to derive the 
spin states of a spin-! particle that we deduced from the results of Stem-Gerlach 
experiments in Chapter 1. First we will make a small change in notation. It is 
customary in discussing angular momentum to call the angular momentum operators 
Jx, Jv, and Jz in general. We have introduced these operators as the generators of 
rotations. The commutation relations that we used in Section 3.3 depended only 
on the fact that rotations about different axes do not commute in a well-defined 
way. Our formulation is general enough to include all kinds of angular momentum, 
both intrinsic spin angular momentum and orbital angular momentum. That is one 
of the major virtues of introducing angular momentum in this way. In Chapter 9 
we will see that for orbital angular momentum—angular momentum of the r  x p 
type—only integral j 's  are permitted. If our discussion of angular momentum is 
restricted to purely orbital angular momentum, it is conventional to denote the 
angular momentum operators by L v, Ly, and Lz. On the otherhand, if our discussion 
is restricted to intrinsic spin angular momentum, it is customary to call the spin 
angular momentum operators Sx, Sy, and Sz. Our discussion in Chapters 1 and 2 
of the intrinsic spin angular momentum of particles like electrons and photons was 
restricted to angular momentum of the latter sort. Thus, we could return to Chapter 2, 
where we first introduced the generator of rotations about the z axis, and relabel Jz to 
Sz, because we were strictly concerned with rotating intrinsic spin states. In addition 
to renaming the operators for intrinsic spin, it is also common to relabel the basis 
states as |s, m), where

S2 |s, m) = s(s +  \)fi2\s, m) (3.76a)

Sz\s, m) =  mh\s, m) (3.76b)

Fora spin-! particle, s =  !  and there are two spin states, |! ,  !) and |! ,  — !).
Before solving the eigenvalue problem for a spin-! particle, it is useful to 

determine the matrix representations of the spin operators Sx, Sv, and Sz. We will use 
as a basis the states l!, !) =  |+z) and |!> —!) =  |—z) that we found in Section 3.3. 
In fact, we already determined the matrix representation of Sz in this basis in 
Section 2.5. Of course, we were calling the operator Jz then. In agreement with 
(2.70) we have

/  (+z|Sz|+z) (+z|Sz|—z) \  _  h /  1 0 \

\  (—z|S,|+z) ( -z |S z|- z )  /  2  \ 0  - \ )

in the Sz basis.
In order to determine the matrix representations for Sx and Sv, we start with 

the matrix representations of the raising and lowering operators S+ and S_, whose
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action on the basis states we already know. Forming the matrix representation in the 
Sz basis for the raising operator using (3.61), we have

^ /<+z|S+l+z> <+z|S+|-z>\ /0  \ \
+ ^  V <-z|S+ |+z) <-z|S+ |- z )  / V O  Oj

reflecting the fact that

S+\+z) = S+\±, ^ > = 0

(3.78)

(3.79)

S+\-z) = S+\± , -±)

= + ( “ 5 )  ( “ i  +  !)  h \\ '  i>

= h\±, l )  =  fi|+z) (3.80)

Also, the matrix representation of the lowering operator in the Sz basis can be 
obtained from (3.62):

. _ /<+z|S_|+z)  <+z|S_|-z)\ =  / 0  0 \
V(-z|5_|+z) (—z|5_|—z) /  _  V l  0 /

reflecting the fact that

5.1—z) =  S .||, —1) =  0

5_|+z) =  5 _ |j ,  | )

= / *  o + o - o )

= h\^, - { )  = h\-z)

(3.81)

(3.82)

(3.83)

As a check, note that since 5+ =  5_, we could also obtain (3.81) as the transpose, 
complex conjugate of the matrix (3.78). Recall (2.80).

With the matrix representations for S+ and 5_, determining the matrix represen­
tations of Sx and Sy is straightforward. Since

S+ = Sx + i Sy (3.84)

S_ =  Sx — i SY (3.85)



96 I 3. Angular Momentum

then

and

§ s + + s -  
2

(3.86)

(3.87)

Using the matrix representations (3.78) and (3.81) in the Sz basis, we obtain

and

mc :) 
■h c : )

(3.88)

(3.89)

The three 2 x 2  matrices in (3.88), (3.89), and (3.77) (without the factors of ft/2) 
are often referred to as Pauli spin matrices and are denoted by crx, cry, and crz, 
respectively. These three equations can then be expressed in the vector notation

S —a  (3.90)
2

where S =  S^i +  Syj  +  Szk and o = crxi + oyj  +  crzk.
We are now ready to find the eigenstates of Sx or Sy. In fact, we can use the 

matrix representations (3.90) to determine the eigenstates of Sn = S ■ n and thus find 
the states that are spin up and spin down along an arbitrary axis specified by the unit 
vector n. We will restrict our attention to the case where n =  cos 0i +  sin 0 j  lies in 
the x-y plane, as indicated in Fig. 3.7. The choice <p = 0 (0 =  Jt/2) will yield the 
eigenstates of Sx (5V) that we used extensively in Chapters 1 and 2. We will leave the 
more general case to the Problems (in particular, see Problem 3.2). We first express 
the eigenvalue equation in the form

S„ Im)=m^Im) (3.91)

where, as we did earlier in our general discussion of angular momentum, we have 
included a factor of h so that /i is dimensionless. The factor of ^ in the eigenvalue 
has been included to make things tum out nicely. After all, we know the eigenvalues 
already. Since the eigenvalues of Sz arc ±f i f2 and since our choice of the z axis 
is arbitrary, these must be the eigenvalues of S„ as well. Equation (3.91), however, 
does not presume particular eigenvalues, and we will see how solving the eigenvalue 
problem determines the allowed values of fi.
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z

Figure 3.7 The spin-up-along-n state, where 
n =  cos 0 i +  sin 0j.x

As in (2.63), we obtain two equations that can be expressed in matrix form by 
taking the inner product of (3.91) with the two bra vectors (+z| and (—z|:

where the 2  x 2  matrix on the left-hand side is just the matrix representation of 
Sn = Sx cos 0  +  Sv sin 0. Dividing out the common factor of h/2, we can write this 
equation as

This is a homogeneous equation in the two unknowns (+z|/x) and (—z|/x). A non­
trivial solution requires that the determinant of the coefficients vanishes. Otherwise, 
the 2 x 2 matrix in (3.93) has an inverse, and multiplying the equation by the inverse 
would leave just the column vector equal to zero, that is, the trivial solution. Thus

showing that /x2  — = /j2 — 1 ^= 0 , or /x = ± 1 .
Now that we know the eigenvalues, we may determine the corresponding eigen­

states. The state with /x =  +1 is an eigenstate of S„ with eigenvalue h/2. Thus, 
in our earlier notation, it is the state |+n), and we can relabel it accordingly: 
|/x =  1) =  |+n). Substituting /x =  +1 into (3.93), we find that

The requirement that the state be normalized ((+ n |+ n) =  1) is satisfied provided 
that

(3.93)

(—z|+n) =  e '*(+z|+n) (3.95)

|(+z|+n)|2 +  |(—z|+n)|2 =  1 (3.96)

Substituting (3.95) into (3.96), we find

2 |< + z |+ n )|2 =  1 (3.97)
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Thus, up to an overall phase, we may choose (+z|+n) =  1/n/2, which with (3.95) 
shows that (—z|+n) =  e'*/V2,  or

7><P
l+n) =  -j= l+z) +  -7=\-z)v 2  v2

(3.98)

Note how, up to an overall phase, this result agrees with (2.41), which we obtained 
by rotating the state |+x) by an angle <p counterclockwise about the z axis, namely, 
|+n) =  fl(0 k)|+x).

The state with /j, = — 1 is an eigenstate of S„ with eigenvalue — H/2. We can thus 
relabel this state \/i = — 1) =  |—n). If we substitute the value n  = — 1 into (3.93), we 
find that

(—z |—n) =  — e,<f>(+z\— n) (3.99)

Satisfying

|( + z |- n ) | 2  +  | ( - z | - n ) |2 = l  (3.100)

we obtain

1I—n) = -=|+z) -  —= |-z )  
V2 v2

(3.101)

These results are in agreement with our earlier forms for these states: setting 
4> = 0 in (3.98) and (3.101) yields

'± x ) = i i ' + z ) ± ^ - z)
(3.102)

while setting (f> = 7t/2 yields

|±y) =  - |= |+ z ) ± 4 =|-z> 
v 2  v2

(3.103)

However, in deriving (3.102) and (3.103) here, we have not had to appeal to the 
results from the Stem-Gerlach experiments. We have relied on only the commutation 
relations of the generators of rotations and their identification with the angular 
momentum operators. In a similar fashion, we can work out the spin eigenstates of a 
particle with arbitrary intrinsic spin s. In this latter case, because there are 2s +  1 spin 
states for a particle with intrinsic spin s, the corresponding eigenvalue problem will 
involve (2s +  1) x (2s +  1) matrices. The procedure for determining the eigenstates 
and corresponding eigenvalues is the same as we have used in this section, but the 
algebra becomes more involved as the dimensionality of the matrices increases.
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EXAMPLE 3.4 Determine the matrix representation for Sx using the spin-| 
states as a basis.

SOLUTION For s =  | ,  there are four basis states, namely | | ,  | ) ,  | | ,  ^), 
1 a n d  1 — |) .  These four states are eigenstates of S2  with eigenvalue 
\  (|  +  1)h2 as well as being eigenstates of Sz with eigenvalues | h, — jh,  
and — \ti, respectively.

Using

S+ |s, m) =  y/s(s +  1 ) — m{m +  1 ) fi\s, m +  1 )

we see that

5+||, = \)
S+ | | - | )  =  2 f i | | ,  | )  

5+ | | , - | )  =  N/3fi|f, - J )

Thus the matrix representation for S+ is given by

/ o V3 0

0  j
0 0 2 0

0 0 0 v'S

u 0 0 0  J

The matrix representation of 5_ is the transpose, complex conjugate of this 
matrix, namely

s_ -► h

1 -

L 0 0 0 0 \

V3 0 0 0

0 2 0 0

V 0 0 V3 o j

of Sx is given by

0
V3 0

0  j
h v/3 0 2 0

2 0 2 0 v'S

0
0 V3 0  J
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3.7 A Stern-Gerlach Experiment with Spin-1 Particles

Let’s return to the sort of Stern-Gerlach experiments that we examined in Chapter 1, 
but this time let’s perform one of these experiments with a beam of neutral spin- 1 

instead of spin-;} particles. Since the z component of the angular momentum of 
a spin- 1  particle can take on the three values h, 0 , and —ft, an unpolarized beam 
passing through an SGz device splits into three different beams, with the particles 
deflected upward, not deflected at all, or deflected downward, depending on the value 
of Sz (see Fig. 3.8).

What happens if a beam of spin-1 particles passes through an SGy device? An 
unpolarized beam should split into three beams since Sv can also take on the three 
values ft, 0, and —ft. If we follow this SGy device with an SGz device, we can ask, 
for example, what fraction of the particles with Sy = ft will be found to have Sz = ft 
when they exit the SGz device (see Fig. 3.9)? Unlike the case of spin where it was 
“obvious” for two SG devices whose inhomogeneous magnetic fields were at right 
angles to each other that 50 percent of the particles would be spin up and 50 percent

Figure 3.8 A schematic diagram indicating the paths that a spin-1 
particle with 5 . equal to ft, 0, or —ft would follow in a Stern-Gerlach 
device.

Sy=ft

SGy —\ No 
—1

SGz

Figure 3 .9 A block diagram for an experi­
ment with spin-1 particles with two SG de­
vices whose inhomogeneous magnetic fields 
are oriented at right angles to each other. What 
fraction o f the particles exiting the SGy device 
with S v =  ft exits the SGz device in each of 
the three channels?
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would be spin down,when they exited the last SG device, here the answer is not 
so clear. In fact, you might try guessing how the particles will be distributed before 
going on. To answer this question, we need to calculate the amplitude to find a particle 
with Sy = h in a state with Sz = h, that is, to calculate the amplitude Z(I, 1| 1, l)y, 
where we have put a subscript on the ket and bra indicating that they are eigenstates 
of Sy and Sz, respectively. A natural way to determine the amplitude Z(I, 1| 1, I)v is 
to determine the eigenstates of Sy for a spin-1 particle in the Sz basis. We use the 
representation of Sy in the Sz basis from (3.28):

Sy -------►
S z  basis

_h_
yfl

/ o  - / 0  \
i 0 —i

\ 0  1 0  )

(3.104)

The eigenvalue equation

Sy |1, fi)y = iih\l, fl)y (3.105)

becomes the matrix equation

/ 0

h_
■n

i

Vo

—i
0

i

°  \  
—i 

0 )

( a \
b

\ c  J

=  \ih
( a \

b

\ c  I

which can be expressed in the form

/  -11 - i/>J 2 0  \
i /yj2 —\1 —i/y/2

\  0  i/y / 2  —/I )

(  a \
b

\ c /

=  0

Note that we have represented the eigenstate by the column vector

( i d  m,M>,  N (a\
1, H)y ^ z d  0 | 1 , H)y = b

\ zd  - i l l ,  H) y) \ c  )

(3.106)

(3.107)

(3.108)

in the Sz basis, where we have used a , b, and c for the amplitudes for notational con­
venience. As we discussed in the preceding section, a nontrivial solution to (3.106) 
requires that the determinant of the coefficients in (3.107) must vanish:

—M - i / V 2
i / y / i —M

0 i / s / 2

0

- i / y / i  

—M

=  0 (3.109)

showing that —/i(ii2 — 5 ) +  (ify/2)(—i 11/ y/2) = 0 , which can be written in the 
form £i(/i2  — 1) =  0. Thus we see that the eigenvalues are indeed given by \i equals
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1, 0, and —1, corresponding to eigenvalues h,, 0, and — h for Sy, as expected. If 
we now, for example, substitute the eigenvalue /x =  1 into (3.106), we obtain the 
equation

1

■ft
( °

i

\ 0

—i
0

i

°  \
—i 

0  )

( a \
b

( a \  
b

indicating that for this eigenstate

—ib  =  V l a ia — i c  =  V l b  and i b  =  V i c

(3.110)

(3.111)

From the first and last of these equations we see that c = —a. Since b = i V l a , the 
column vector in the Sz basis representing the eigenstate of Sv with eigenvalue h is 
given by

II. 1 >,

/  « \
i V l a

\  ~a J
The requirement that the state be normalized is

(3.112)

(■a*, - i V l a \  -a*)
I  a \

iV la

\  - a  J
= 4\a\2 = \ (3.113)

Thus, up to an overall phase, we can choose a = j ,  showing that

1 . D y-------
Sz basis

1
2

/

V

or, expressed in terms of kets,

H. D.v =  - I ^  1) +  / — H , 0 ) - - | 1 , -1)

(3.114)

(3.115)

Note that we have not put subscripts on the kets on the right-hand side of (3.115) 
because, if there is no ambiguity, we will use the convention that without subscripts 
these are understood to be eigenkets of Sz.

Based on our result, we can now ascertain how a beam of spin-1 particles exiting 
an SGy device in the state 1 1 , l )v, that is, with Sv =  h,, will split when it passes 
through an SGz device. The probability of the particles exiting this SGz device 
with Sz = h is given by |(1, 1| 1, l ) v | 2  =  | ^ | 2  =  j ;  the probability of the particles
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SGy SGz

—1 S- = ~h

N0/4 
Nq/2 S, 
Nq/4

0

Figure 3.10 A block diagram showing the results o f the Stern- 
Gerlach experiment with spin-1 particles.

exiting this SGz device with Sz = 0 is given by |(1, 0|1, l ) v | 2  =  \i>/2/2\2 = and 
the probability that the particles exit the SGz device with Sz = —h is given by 
|(1, —1|1, l ) v | 2  =  | — j \ 2 = So when a beam of spin-1 “spin-up” particles from 
one SG device passes through another SG device whose inhomogeneous magnetic 
field is oriented at right angles to that of the initial device, 25 percent of the particles 
are deflected up, 50 percent of the particles are not deflected, and 25 percent of 
the particles are deflected down (see Fig. 3.10). This is to be compared with the 
50 percent up and 50 percent down that we saw earlier for spin-^ particles in a 
similar experiment.

EXAMPLE 3.5 Determine the fraction of spin-1 particles exiting the SGy 
device with Sv = 0 that exits the SGz device in each of the three channels, 
namely with Sz = fi, Sz = 0, and Sz = —h.

SOLUTION Return to (3.106) and put /i = 0, which shows that b =  0 and 
a = c. Thus, the normalized eigenstate with Sv = 0 is

11. 0 ) y

or, expressed in terms of kets,

Therefore |(1, 1|1, 0 ) v | 2  =  |(1, -1 |1 , 0) v | 2  =  |1 /V 2 | 2  =  1/2. Thus 50 per­
cent of the particles exit the SGz device with Sz = h and 50 percent exit with
Sz = -h .

The results of this chapter may convince you that it is not easy to predict 
the results of Stern-Gerlach experiments without a detailed calculation. If 
you need more evidence, try your hand at Problem 3.22 or Problem 3.25, 
where a beam of spin-| particles is sent through a series of SG devices.

Sz basis

(  \ \  
0

W
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3.8 Summary

To a physicist, angular momentum along with linear momentum and energy consti­
tute the “big three” space-time dynamical variables used to describe a system . 8  An­
gular momentum enters quantum mechanics in the form of three operators— Jx, Jy, 
and Jz—that generate rotations of states about the x, y, and z axes, respectively. 
Because finite rotations about different axes do not commute, the generators satisfy 
the commutation relations

[JX, Jy] = ihJz [Jy, Jz\ = ihJx [Jz, Jx] =  ihjy (3-116)

where the commutator of two operators A and B is defined by the relationship

[A, B] =  AB — BA (3.117)

Although the three generators Jx, Jy, and Jz do not commute with each other, 
they each commute with

j 2= r -  + r - + i }  (3.H8)

Thus, we can find simultaneous eigenstates of J2 and one of the components, for 
example, Jz. These eigenstates are denoted by the kets | j ,m )  where

J 2| j ,m )  = j ( j +  \)h2\j,m)  (3.119a)

Jz\j, m) = mh\j, m) (3.119b)
A A ^ A A

Physically, we can see why y  and Jz commute, since the eigenvalue for J  specifies 
the magnitude of the angular momentum for the state and the magnitude of the 
angular momentum, like the length of any vector, is not affected by a rotation.

The linear combination of the generators

J+ Jx +  i Jy (3.120)

is a raising operator:

J+\j, m) = y / j 0 ‘ +  1 ) -  m(m +  1 ) h\j, m +  1 ) (3.121)

whereas 7_ =  Jx — i Jv is a lowering operator:

7_|>, m) =  v/y‘0 ‘ +  1 ) -  m(m -  1 ) h\j, m -  1 ) (3.122)

8 Relativistically, we could term them the big two, grouping linear momentum and energy 
together as an energy-momentum four-vector. The importance of these variables arises primarily 
because of the conservation laws that exist for angular momentum, linear momentum, and energy. 
In Chapter 4 we will begin to see how these conservation laws arise. Intrinsic spin angular 
momentum plays an unusually important role, which we will see when we consider systems of 
identical particles in Chapter 12.



3.8 Summary | 105

Since the magnitude of the projection of the angular momentum on an axis for a state 
must be less than the magnitude of the angular momentum itself, there are limits on 
how far you can raise or lower the m values, which are sufficient to determine the 
allowed values of j  and m:

j  = 0 , - ,  1 , - , 2 ,  . . .  (3.123)
2 2

and for any particular j,  m ranges from + j  to — j  in integral steps:

m = j,  j  -  \, j  - 2 ,  . . . ,  -  j  +  1, - j  (3.124)

The eigenstates of Jn = J  ■ n, the component of the angular momentum along an 
axis specified by the unit vector n, can be determined by setting up the eigenvalue 
equation

Jn\j,m)n = mh\j ,m)n (3.125)

using the eigenstates of Jz as a basis. Since for a particular j ,  there are 2j  + 
1 different states \j, m), the eigenvalue equation (3.125) can be expressed as a 
matrix equation with the matrix representation of Jn = J  • n =  Jxnx +  Jyny +  Jznz 
following directly from (3.119b), (3.120), (3.121), and (3.122). As an important 
example, the matrix representations for spin  ̂ sire given by

S ------- >-<j  (3.126)
Sz basis 2

with the Pauli spin matrices

* = (!  I )  = 0  o ) and a‘ = (o - ,)  (3127)
In (3.126) we have labeled the angular momentum operators by S instead of J, 
because when j  =  j  we know that we are dealing with intrinsic spin.

Finally, when two Hermitian operators do not commute,

[A,B] =  iC (3.128)

there is a fundamental uncertainty relation

A A A B > ^ —  (3.129)

From this result follows uncertainty relations for angular momentum such as

AJxAJy > | | ( 7 r)| (3.130)

If the z component of the angular momentum has a definite nonzero value, making 
the right-hand side of (3.130) nonzero, then we cannot specify either the x or 
y component of the angular momentum with certainty, because this would require the
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left-hand side of (3.130) to vanish, in contradiction to the inequality. This uncertainty 
relation is, of course, built into our results (3.123) and (3.124), which, like (3.130), 
follow directly from the commutation relations (3.116). Nonetheless, uncertainty 
relations such as (3.130) bring to the fore the sharp differences between the quantum 
and the classical worlds. In Chapter 6  we will see how (3.128) and (3.129) lead to 
the famous Heisenberg uncertainty relation AjcApx > h/2.

Problems

3.1. Verify for the operators A , B, and C that

(a) [A, B + C] = [A, B]+[A,C]
(b) [A, BC] = B[A, C] +  [A, B]C 

Similarly, you can show that

(c) [AB, C] = A[B, C] +  [A, C]B

3.2. Using the |+z) and |—z) states of a spin-^ particle as a basis, set up and solve as a 
problem in matrix mechanics the eigenvalue problem for S„ = S • n, where the spin 
operator S =  Sxi +  Syj  +  Szk and n =  sin 6 cos <f>\ +  sin 6 sin <f>j  +  cos 0k. Show 
that the eigenstates may be written as

0 6 
|+n) =  cos - |+ z )  +  e'* sin - 1—:z)

|— n) =  sin ~l+z)  — ^  cos :z)

Rather than simply verifying that these are eigenstates by substituting into the 
eigenvalue equation, obtain these states by directly solving the eigenvalue problem, 
as in Section 3.6.

3.3. Show that the Pauli spin matrices satisfy o,Oj +  crycr, =  2<5,y I, where i and j  
can take on the values 1, 2, and 3, with the understanding that 0 \ =  crv, a2 = crv, 
and <r3  =  az. Thus for i =  j  show that = a^ = crz2  =  I, while for / ^  j  show 
that {0 7 , ctj} = 0 , where the curly brackets arc called an anticommutator, which 
is defined by the relationship {/\, B) =  AB +  BA.

3.4. Verify that (a) a  x a  =  2ia  and (b) a  ■ a a  ■ b =  a • b I +  /'a • (a x b), where
O = Ox\ +  <7vj  +  <7zk.

3.5. This problem demonstrates another way (also see Problem 3.2) to determine 
the eigenstates of S„ = S • n. The operator

R(0 j) =  e~iSy6/h

rotates spin states by an angle 6 counterclockwise about the y axis.
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(a) Show that this rotation operator can be expressed in the form

e 2  u  . eR(6i) =  co s---------Sv sin -
J 2 h y 2

Suggestion: Use the states |+z) and |—z) as a basis. Express the operator 
R(6$) in matrix form by expanding R in a Taylor series. Examine the explicit 
form for the matrices representing S^, S and so on.

(b) Apply R in matrix form to the state |+z) to obtain the state |+n) given in 
Problem 3.2 with 0  =  0, that is, rotated by angle 6 in the x-z plane. Show that 
R\ —z) differs from |—n) by an overall phase.

3.6. Derive (3.60).

3.7. Derive the Schwarz inequality

> l<a|/s> | 2

Suggestion: Use the fact that

«a;|+A.*</S|)(|a) +  X\/3)) > 0 

and determine the value of X that minimizes the left-hand side of the equation.

3.8. Show that the operator C defined through [A, B] = iC is Hermitian, provided 
the operators A and B sire Hermitian.

3.9. Calculate A Sx and A Sy for an eigenstate of Sz fora spin-^ particle. Check to see 
if the uncertainty relation A.SxA.Sy > h\(Sz)\/2 is satisfied. Repeat your calculation 
for an eigenstate of Sx.

3.10. Use the matrix representations of the spin-^ angular momentum operators Sx, 
Sv, and Sz in the Sz basis to verify explicitly through matrix multiplication that

I-

[Sx, Sv] =  ihSz

3.11. Determine the matrix representations of the spin-^ angular momentum opera­
tors Sx, SY, and Sz using the eigenstates of Sy as a basis.

3.12. Verify for a spin-^ particle that (a)

Sz = (h/2)|+z)<+z| -  (h /2)\ -z)(-z\

and (b) the raising and lowering operators may be expressed as

S+ = h |+ z)(—z| and S_ = h\—z)(+z\

Note: It is sufficient to examine the action of these operators on the basis states |+z) 
and |—z), which of course form a complete set.
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3.13. Repeat Problem 3.10 using the matrix representations (3.28) for a spin-1 
particle in the Jz basis.

3.14. Use the spin-1 states |1, 1), |1, 0), and |1, — 1) as a basis to form the matrix 
representations of the angular momentum operators and hence verify that the matrix 
representations (3.28) are correct.

3.15. Determine the eigenstates of Sx for a spin-1 particle in terms of the eigenstates 
11, 1), |1, 0), and 11, -1 ) of Sz.

3.16. A spin-1 particle exits an SGz device in a state with Sz = h. The beam then 
enters an SGx device. What is the probability that the measurement of Sx yields the 
value 0 ?

3.17. A spin-1 particle is in the state

\ f )
Sz basis y i 4

/ 1 \
2

\ 3  / /

(a) What are the probabilities that a measurement of Sz will yield the values h, 0, 
or —h for this state? What is (Sz)?

(b) What is (Sv) for this state? Suggestion: Use matrix mechanics to evaluate the 
expectation value.

(c) What is the probability that a measurement of Sx will yield the value fi for 
this state?

3.18. Determine the eigenstates of Sn = S ■ n for a spin-1 particle, where the spin 
operators =  Sxi +  S.J +  Szk and n =  sin 6 cos <f> i +  sin 6 sin <f> j  +  cos 0  k. Use the 
matrix representation of the rotation operator in Problem 3.19 to check your result 
when 0  =  0 .

3.19. Find the state with Sn = h of a spin-1 particle, where n =  sin 6 i +  cos 6 k, 
by rotating a state with Sz = h by angle 6 counterclockwise about the y axis using 
the rotation operator fl(0j) = e~lSy0/h. Suggestion: Use the matrix representation 
(3.104) for 5V in the Sz basis and expand the rotation operator in a Taylor series. 
Work out the matrices through the one representing y  in order to see the pattern 
and show that

1 +  cos 6
(

/?(0 j)
5 , basis

\

2 
sin 6
~VT

1 — cos 0

sin 6
“  v f
cos 6 

sin 6
v T

1 — cos 9 
2

sin 6
~  v f

1 +  COS 0

Z . 2 0 .  A beam of spin-1 particles is sent through a series of three Stem-Gerlach 
measuring devices (Fig. 3.11). The first SGz device transmits particles with Sz = h
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Figure 3.11 A Stem-Gerlach experiment with spin-1 particles.

and filters out particles with Sz = 0 and Sz = —h. The second device, an SGn device, 
transmits particles with S„ = h and filters out particles with Sn = 0 and Sn = —h, 
where the axis n makes an angle 6 in the x-z plane with respect to the z axis. A last 
SGz device transmits particles with Sz =  —h and filters out particles with Sz = h and 
Sz =  0.

(a) What fraction of the particles transmitted by the first SGz device will survive 
the third measurement? Note: The states with S„ = h, Sn = 0, and Sn = —h 
in the Sz basis follow directly from applying the rotation operator given in 
Problem 3.19 to states with Sz = h ,Sz = 0, and Sz = —h, respectively.

(b) How must the angle 6 of the SGn device be oriented so as to maximize the 
number of particles that are transmitted by the final SGz device? What fraction 
of the particles survive the third measurement for this value of 61

(c) What fraction of the particles survive the last measurement if the SGn device 
is removed from the experiment?

Repeat your calculation for parts (a), (b), and (c) if the last SGz device transmits 
particles with Sz = 0 only.

3.21. Introduce an angle 6 defined by the relation cos# =  7Z/ |J |,  reflecting the 
degree to which a particle’s angular momentum lines up along the z axis. What 
is the smallest value of 6 for (a) a spin-^ particle, (b) a spin- 1  particle, and (c) a 
macroscopic spinning top?

f .

3.22. Arsenic atoms in the ground state are spin-1 particles. A beam of arsenic atoms 
enters an SGx device, a Stem-Gerlach device with its inhomogeneous magnetic field 
oriented in the x direction. Atoms with Sx = j  fi then enter an SGz device. Determine 
the fraction of the atoms that exit the SGz device with Sz = \h, Sz = ^h, Sz = —\h,  
and Sz =  — |/i.

3.23. For a spin-| particle the matrix representation of the operator Sx in the Sz 
basis is given by

0
V 3 0 0 >

v'S 0 2 0

0 2 0 v'S

0 0 V 3 0 J
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Pick one of the following states and verify that it is an eigenstate of Sx with the 
appropriate eigenvalue:

|3
I 2 ’ 2  lx 2y/2

/  1 \
V3

V3
3 iv
2 ’ 2'x

(  V3 \

1

2y/2
1

- 1

3
2 -5>, 2y/2

\  1 7

/  V 3 \  

- 1  

- 1  

W 3 /

\ - * K )

| 3  _ 3 x  
12' 2'x

/  1 \
1

2y/2
-V 3

V3

V - 1  /

Do you notice any property of these representations that is at least consistent with 
the other states being correct?

3.24. A spin-1 particle is in the state

/  / \
2

V 4 * /
(a) Determine a value for N so that |V0 is appropriately normalized.
(b) What is (Sx) for this state? Suggestion: The matrix representation of Sx is 

given in Example 3.4.
(c) What is the probability that a measurement of Sx will yield the value h/2  for 

this state? Suggestion: See Problem 3.23.

3.25.
(a) Determine the matrix representation for SY for a spin-| particle.

(b) Determine the normalized eigenstate of Sv with eigenvalue \h.
(c) As noted in Problem 3.22, arsenic atoms in the ground state sire spin-| 

particles. A beam of arsenic atoms with Sv =  enters an SGz device. 
Determine the fraction of the atoms that exit the SGz device with Sz = jh,  
Sz = jh,  Sz = —jh,  and Sz = —jh.

3.26. Show that if the two Hermitian operators A and B have a complete set of 
eigenstates in common, the operators commute.

3.27. Show that
e A +  B ^ e Ae B

unless the operators A and B commute. Problem 7.19 shows what happens if A and 
B do not commute but each commutes with their commutator [A, B].



CHAPTER 4

Time Evolution

Most of the interesting questions in physics, as in life, concern how things change 
with time. Just as we have introduced angular momentum operators to generate 
rotations, we will introduce an operator called the Hamiltonian to generate time 
translations of our quantum systems. After obtaining the fundamental equation of 
motion in quantum mechanics, the Schrodinger equation, we will examine the time 
evolution of a number of two-state systems, including spin precession and mag­
netic resonance of a spin-^ particle in an external magnetic field and the ammonia 
molecule.

4.1 The Hamiltonian and the Schrodinger Equation

We begin our discussion of time development in quantum mechanics with the time- 
evolution operator U(t ) that translates a ket vector forward in time:

0 ( t ) m o ) )  = m o )  (4.D

where 1^ ( 0 )) is the initial state of the system at time t = 0  and |^ ( 0 ) is the state 
of the system at time t. In order to conserve probability, 1 * Ill time evolution should not 
affect the normalization of the state:

=  wmOHoOvmm = wm'i'm =  i  (4.2)

1 In most applications of nonrelativistic quantum mechanics, the total probability of finding 
the particle doesn't vary in time. However, an electron could disappear, for example, by meeting
up with its antiparticle, the positron, and being annihilated. Processes such as particle creation and 
annihilation require relativistic quantum field theory for their description.

Ill



112 I 4. Time Evolution

which requires

U'(t)U(t) = 1 (4.3)

Thus the time-evolution operator must be unitary.
Just as we introduced the generator of rotations in (2.29) by considering an 

infinitesimal rotation, here we consider an infinitesimal time translation:

U(dt) = 1 - - H  dt 
h

(4.4)

where the operator H is the generator of time translations. Clearly, we need an 
operator in order to change the initial ket into a different ket at a later time. This is 
the role played by H. Unitarity of the time-evolution operator dictates that H is a 
Hermitian operator (see Problem 4.1).

We can now show that 0  satisfies a first-order differential equation in time. Since

U(t +  dt) = U(dt)U(t) = 1 -  - U«) (4.5)

then

UU + d t ) - U ( t )  = [ - - U(t)

indicating that the time-evolution operator satisfies2

ih— U = HU(t) 
dt

(4.6)

(4.7)

We can also apply the operator equation (4.6) to the initial state 1^(0)) to obtain

ih— 1^ ( 0 ) =  H\f{t ) )  
dt

(4.8)

This equation, known as the Schrodinger equation, is the fundamental equation of 
motion that determines how states evolve in time in quantum mechanics. Schrodinger 
first proposed the equation in 1926, although not as an equation involving ket vectors 
but rather as a wave equation that follows from the position-space representation of 
(4.8), as we will see in Chapter 6 .

If H is time independent, we can obtain a closed-form expression for 0  from a 
series of infinitesimal time translations:

2 The derivative of an operator is defined in the usual way, that is.

dU U(t +  At)  -  U(t )—  = lim
d t  A / - - + 0 At
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0  (t) =  limA/—M5G

/ , \ i N
, - i t f  '  =«-<fi \WJ

where we have taken advantage of Problem 2.1. Then

-iHt/h (4.9)

(4.10)

Thus in order to solve the equation of motion in quantum mechanics when H is time 
independent, all we need is to know the initial state of the system |^ ( 0 )) and to be 
able to work out the action of the operator (4.9) on this state.

What is the physical significance of the operator HI  Like the generator of 
rotations, H is a Hermitian operator. From (4.4) we see that the dimensions of H 
are those of Planck’s constant divided by time—namely, energy. In addition, when 
H itself is time independent, the expectation value of the observable to which the 
operator H corresponds is also independent of time:

(r/,(t)\H\f(t)) = ( f ( 0 ) \ U ' ( t ) H U « ) \ f m  = ( f ( 0 ) \ H \ f m  (4.11)

since H commutes with V ? All of these things suggest that we identify H as the 
energy operator, known as the Hamiltonian. Therefore

(E) = W\H\1r) (4.12)

The eigenstates of the Hamiltonian, which are the energy eigenstates satisfying

H\E) = E\E) (4.13)

play a special role in quantum mechanics. The action of the time-evolution operator 
U(t) on these states is easy to determine using the Taylor series for the exponential:

~iH,/h\ E) = , iHt  1
1 --------- +  rr

h V.

iEt_ \_ 
h + 2 !

iHt
h

E t \

+

1 -  —  +  1 +h )

\E)

\E) = e~iEl/h\E) (4.14)

The operator H in the exponent can simply be replaced by the energy eigenvalue 
when the time-evolution operator acts on an eigenstate of the Hamiltonian. Thus if 
the initial state of the system is an energy eigenstate, |^ ( 0 )) =  |£ ), then

\xfr(t)) =e~ifl,/ri\E) =e~iE,/tl\E) (4.15)

3 To establish that H commutes with t), use the Taylor-series expansion for 0 ,  as in (4.14).
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The state just picks up an overall phase as time progresses; thus, the physical state 
of the system does not change with time. We often call such an energy eigenstate a 
stationary state to emphasize this lack of time dependence.

You might worry that physics could turn out to be boring with a lot of empha­
sis on stationary states. However, if the initial state 1^(0)) is a superposition of 
energy eigenstates with different energies, the relative phases between these en­
ergy eigenstates will change with time. Such a state is not a stationary state and the 
time-evolution operator will generate interesting time behavior. All we need to do 
to determine this time dependence is to express this initial state as a superposition 
of energy eigenstates, since we now know the action of the time-evolution operator 
on each of these states. We will see examples in Sections 4.3 and 4.5.

4.2 Time Dependence of Expectation Values

The Schrodinger equation permits us to determine in general which variables exhibit 
time dependence for their expectation values. If we consider an observable A , then

dt dt

= + w(oi4 + woi—i*(o>

=  * ! * ( '»  +  ( f( t ) \A  +  ( f ( t ) \ ^ - \ f ( t ) )

= ^ ( t ) \ [ H ,  A]W(t)) + HD) (4.16)
h dt

The appearance of the last term involving dA/dt  in this equation allows for the 
possibility that the operator depends explicitly on time. Equation (4.16) shows that 
provided the operator corresponding to a variable does not have any explicit time 
dependence (dA/dt = 0), the expectation value of that variable will be a constant 
of the motion whenever the operator commutes with the Hamiltonian.

What do we mean by explicit time dependence in the operator? Our examples 
in Sections 4.3 and 4.4 will probably illustrate this best. The Hamiltonian for a 
spin-^ particle in a constant magnetic field is given in (4.17). There is no explicit 
/ dependence in H\ therefore substituting H for the operator A in (4.16) indicates 
that energy is conserved, since H of course commutes with itself. However, if we 
examine the Hamiltonian (4.34) for a spin-j particle in a time-dependent magnetic 
field, we see explicit time dependence within the Hamiltonian in the factor cos cot. 
Such a Hamiltonian does not lead to an expectation value for the energy of the spin
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system that is independent of time because dH/dt = 0. There is clearly an external 
system that is pumping electromagnetic energy into and out of the spin system.

4.3 Precession of a Spin-^ Particle in a Magnetic Field

As our first example of quantum dynamics, let’s consider the time evolution of the 
spin state of a spin-^ particle in a constant magnetic field. We will choose the z axis 
to be in the direction of the magnetic field, B =  B0k, and take the charge of the spin- 
\  particle to be q = —e, that is, to have the same charge as an electron. The energy 
operator, or Hamiltonian, is given by

H =  —/t • B =  - ^ - S  • B =  —  SZB0 = coqSz (4.17)
2 me 2  me

where we have used (1.3) to relate the magnetic moment operator /t and the intrinsic 
spin operator S. We have also defined co0 = geB0/2mc. The eigenstates of H are the 
eigenstates of 5,:

y-

H\+z) =w „S 2 |+z> =  - - 2 |+ z ) =  E+|+z> (4.18a)

H |- z )  =  w0 5z|- z )  =  — ^ | - z )  =  E_ |- z )  (4.18b)

where we have denoted the energy eigenvalues of the spin-up and spin-down states 
by E+ and E_, respectively.

What happens as time progresses? Since the Hamiltonian is time independent, 
we can take advantage of (4.9):

UU) = e~iki/h =  e~iw°^ ,/h = e~rs**/h = R(4>k) (4.19)

where in the last two steps we have expressed the time-development operator as the 
rotation operator that rotates states about the z axis by angle 4> =  co0t. Thus we see 
that placing the particle in a magnetic field in the z direction rotates the spin of the 
particle about the z axis as time progresses, with a period T =  2jt/cdq. Using the 
terminology of classical physics, we say that the particle’s spin is precessing about 
the z axis, as depicted in Fig. 4.1. However, we should be careful not to carry over 
too completely the classical picture of a magnetic moment precessing in a magnetic 
field since in the quantum system the angular momentum—and hence the magnetic 
moment—of the particle cannot actually be pointing in a specific direction because 
of the uncertainty relations such as (3.75).

In order to see how we work out the details of quantum dynamics, let’s take 
a specific example. With B =  we choose |^(0)) =  |+x). The state |+x) is a
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z

Figure 4.1 A sp in -| particle, initially in the state |+ x ) ,  
precesses about the magnetic field, which points in the z 
direction.

superposition of eigenstates of Sz, and therefore from (4.18) it is a superposition of 
energy eigenstates with different energies. The state at time t is given by

| =  M = |+ z >  +  —  |
V T

— 1+ z ) + -
e -i(o0t/2

-iE.t/h

- Z ) )

■Jl
I z)

V 2

J<oq1/2
l+ Z )  +  -----~nr I Z>

V 2

(4.20)

This state does not simply pick up an overall phase as time progresses; it is not a 
stationary state. Equation (4.20) can also be written as

gi^ot

v f

which is just an overall phase factor times the spin-up state |+n) that we found in 
(3.98), provided we choose the azimuthal angle <f> = (orf.

Let’s investigate how the probabilities of being in various spin states and the spin 
expectation values evolve in time. We use the expression (4.20) for |r//(t)). Note that

|-z)j (4.21)\\f/(t))=e— ,<uof/ 2 Gil+ Z )

|(+ z |^ ( 0 ) | 2

l(-z|^(0)l2

e -i(OQt/2 2

~ 7 T
\
2

ei(OQt/2 2

" 7 T
\
2

are independent of time, and therefore

(4.22a)

(4.22b)

(4.23)

is also a constant of the motion.
When we examine the components of the intrinsic spin in the jc- y plane, we do 

see explicit time dependence. Since
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(+x|^(0> =
. 7 f <4* l +  7 l <

- * ' )  (■
, —i(0Q t/2

l+z> +
,iwQl/2

~ 7 T
I-*)

1 , ,  n  1 / e - ‘^ / 2\  <oat=  —= ( 1 , 1 ) —— I I =  cos —
7 2  7 2  \ e ,(0Q'l2 )  2

(4.24)

where in the second line we have used the matrix representations for the states in the 
Sz basis, then

| ( + x | ^ ( 0 > | 2 =  cos2  —  (4.25)

As a check, note that the probability of the particle being spin up along the x axis is 
one at time t  = 0, as required by the initial condition. Similarly,

(- x |^ )> =  ( - L (+ z | - - L (- z |) (
e - i u ) 0 t / 2  „ i (oqI / 2

|+Z) +  -----— | z)
.72 72 7 V 72 72

1 , ,  „  1 / e- iuo,/2\  . . toot= —t=(1 , — 1 ) — = 1  ) =  —i sin —
7 2  7 2  \ e ,(°o^2 /  2

(4.26)

and

K-x|Vr(f ) > | 2  =  sin2 -iL (4.27)

The sum of the probabilities to be spin up or spin down along x is one for all 
times, since these two states |+ x )  and |—x) form a complete set and probability 
is conserved. We can determine the average value of Sx either as the sum of the 
eigenvalues multiplied by the probabilities of obtaining each of these eigenvalues,

(Sx) =  cos2  Up* 
2

'-*f sin 2  up* h
=  — COS ( O Q t (4.28a)

or from

<sx) = m * ) \ s xm t ) )

= J L  (ê /2  e- i*n\  K ( °  ' \ ± ( e-i(ao1/2\
7 2 '  ’ '  2  \  1 0 /  7 2  V e1̂ / 2 )

h
=  —  COS ( O Q t (4.28b)

where we have used the representation for the bra and the ket vectors and the operator 
in the 5, basis.
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A similar calculation yields

l(+ylV '(0 > | 2  =  - ^ ~  (4.29a)

l< -yl»(»)l2=  (4.29b)

and

ft
{Sy) = -  sin co0t (4.30)

All of these results are consistent with the spin precessing counterclockwise around 
the z axis with a period T = 2ji/ cdq, in agreement with our analysis using the explicit 
form (4.19) of the time-evolution operator as a rotation operator. If the charge q of 
the particle is taken to be positive rather than negative, co0 is negative, and the spin 
processes in a clockwise direction.

Before going on to examine some examples of spin precession, it is worthwhile 
commenting on the time dependence of the expectation values (4.23), (4.28), and 
(4.30). First, note from (4.16) that

- ( S z) = ' - m H , S M )  (4.31)dt fi

We can see from the explicit form of the Hamiltonian (4.17), which is just a constant 
multiple of Sz, that H commutes with Sz and therefore (Sz) is time independent 
[as (4.23) shows]. It is interesting to consider this result from the perspective of 
rotational invariance. In particular, with the external magnetic field in the z direction, 
rotations about the z axis leave the spin Hamiltonian unchanged. Thus the generator 
Sz of these rotations must commute with H, and consequently from (4.31) (Sz) is a 
constant of the motion. The advantage of thinking in terms of symmetry (a symmetry 
operation is one that leaves the system invariant) is that we can use symmetry to 
determine the constants of the motion before we actually carry out the calculations. 
We can also know in advance that (Sx) and (Sy) should vary with time. After all, 
since Sx and 5V generate rotations about the x and y axes, respectively, and the 
Hamiltonian is not invariant under rotations about these axes, H does not commute 
with these generators.

EXAMPLE 4.1 Verify that the expectation values (4.28) and (4.30) satisfy 

dt n

H = coqS.

SOLUTION Since
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we want to see if .

“ (5*) =  ^(f\[co0Sz, S,]|V0  =  -w 0 (5v> 
at h

where we have used

[S2, Sx] = ifiSy

one of the fundamental commutation relations of the angular momentum 
operators. Substituting in the expectation values (4.28) and (4.30), we see 
that indeed

THE g  FACTOR OF THE MUON

An interesting application of spin precession is the determination of the g factor of 
the muon. The pion is a spin-0 particle that decays into a muon and a neutrino. The 
primary decay mode, for example, of the positively charged pion is j t+ —► fi+ +  vM, 
where the subscript on the neutrino indicates that it is a type of neutrino associated 
with the muon. Unlike photons, which are both right- and left-circularly polarized, 
neutrinos are essentially left handed.4  For a spin-^ particle like the neutrino this 
means that the projection of the angular momentum along the direction of motion 
of the neutrino is only —h/2. There is no +h/2 projection. Conservation of angular 
momentum in the decay of a pion at rest requires that the muon produced in this 
decay, which is also a spin-^ particle,pc  left handed as well (see Fig. 4.2). The muon 
is unstable and decays via /i+ —► e+ +  ve +  vM, with a lifetime of approximately 2 . 2  

microseconds in the muon’s rest frame. As a consequence of the weak interactions 
responsible for the decay, the positron is preferentially emitted in a direction opposite 
to the spin direction of the muon, and therefore monitoring the decay of the muon 
gives us information about its spin orientation. If the muon is brought to rest, say 
in graphite, and placed in a magnetic field of magnitude B0 along the z direction 
with the initial spin state spin up along the x axis as in our earlier discussion, the 
spin of the muon will precess. A detector located along the x axis to detect the 
positrons that are produced in the decay should yield a counting rate proportional

4 The existence of neutrino oscillations indicates that neutrinos have a very small mass. If the 
neutrino mass were exactly zero, neutrinos would be purely left handed.

ricof) .
----—  sin <oQt

- o)q (Sy)

hot
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Figure 4 .2  (a) Conservation o f linear and angular 
momentum requires that the decay o f the spin-0  pion in 
its rest frame produces a left-handed /z+ , since the vfl is 
essentially a left-handed particle, (b) The /z+ is brought 
to rest with its spin up along the x  axis and allowed 
to precess in a magnetic field in the z direction. The 
positrons from the /z+ decay are emitted preferentially 
in the opposite direction to the spin o f  the /z+ .

to (4.25) as the muon’s spin precesses in the magnetic field. Figure 4.3 shows the 
data from a typical experiment that we can use to obtain a value for the g factor (see 
Problem 4.7). The first measurements of this sort were carried out by Garwin et al . , 5  

who found g = 2.00 ±0.10. The best experimental value for g — 2 of the muon, 
good to six significant figures, comes from a spin-precession experiment carried out 
at Brookhaven National Laboratory. 6  There is much interest in measuring the g factor 
of the muon because its accurate determination can provide information about the 
strong and electro-weak interactions at short distances, as well as a detailed test of 
quantum electrodynamics.

2n  ROTATIONS OF A SPIN-  ̂ PARTICLE

As a second illustration of spin precession, let’s consider a beautiful experiment that 
demonstrates that rotating a spin-^ particle through 2n radians causes the state of 
the particle to change sign, as shown in (2.43). At first thought, it might not seem 
feasible to test this prediction since the state of the particle picks up an overall phase 
as the result of such a rotation. However, as we saw in our discussion of Experiment 4 
in Chapter 1, a single particle can have amplitudes to take two separate paths and 
how these amplitudes add up, or interfere, depends on their relative phases. Werner 
et al. 7  used neutrons as the spin-| particles and constructed an interferometer of the

5 R. L. Garwin, L. M. Lederman, and M. Weinrich, Phvs. Rev. 105, 1415 (1957).
6 This measurement [G. W. Bennett etal., Phys. Rev. Lett. 92, 1618102(2004)] takes advantage 

of the fact that the difference between the frequency at which the muon circles in a constant 
magnetic field (its cyclotron frequency) and the frequency of spin precession for a muon initially 
polarized parallel or antiparallel to its direction of motion is proportional to g — 2 .

7 S. A. Wemer. R. Colella, A. W. Overhauser, andC. F. Eagen, Phys. Rev. Lett. 35,1053 (1975).
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Precession frequency = 807.5 kHz

Figure 4 .3  Data on the precession o f a muon 
in a magnetic field o f  magnitude 60 gauss. 
Adapted from J. Sandweiss et al., Phys. Rev. 
Lett. 30, 1002 (1973).

C3

C,

(b)

Figure 4 .4  (a) A schematic diagram o f the neutron interferometer and (b) the difference 
in counts between the counters C3 and C2 as a function o f  the magnetic field strength. 
Adapted from Werner et al., Phys. Rev. Lett. 35, 1053 (1975).

type first developed for X-rays. Their schematic of the interferometer is shown in 
Fig. 4.4a. A monoenergetic beam of thermal neutrons is split by Bragg reflection 
from a crystal of silicon into two beams at A, one of which traverses path ABD and 
the other path ACD. A silicon crystal is used to deflect the beams at B and C, as well 
as to recombine them at D. As in a typical interferometer, there will be constructive 
or destructive interference depending on the path difference between the two legs 
ABD and ACD. The relative phase of the two beams can be altered, however, by 
allowing one of the beams to pass through a uniform magnetic field. As indicated 
by (4.21), there will be an additional phase difference of

(P = coT = ^ ^ T  (4.32)
2 M c

introduced, where M is the mass of the nucleon, B0 is the magnitude of the uniform 
field on the path AC, and T is the amount of time the beam spends in the magnetic
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field. 8  In the experiment, the magnitude of the magnetic field strength could be varied 
between 0 and 500 gauss. The difference in fl0, which we call A B, needed to produce 
successive maxima is determined by the requirement that

geAB ^  
2Mc

4 n (4.33)

Notice that we have used the fact that a rotation by 4n radians is required to return the 
overall phase of spin-^ ket to its original value. As shown in Fig. 4.4b, Werner et al. 
found AB = 62 ±  2 gauss in their experiment. If rotating a ket by 2n radians were 
sufficient to keep the phase of the ket the same, the observed value of AB  would have 
been one half as large as that found in the experiment. Thus the experimental results 
give an unambiguous confirmation of the unusual prediction (2.43) of quantum 
mechanics for spin-^ particles.

EXAMPLE 4.2 The Hamiltonian for a spin-| particle in a magnetic field 
B =  B0\ is given by

H = coqSx

where co0 = geB§l2mc. If initially the particle is in the state

IV'(O)) = l+z)

determine 1^ ( 0 )* the state of the particle at time t.

SOLUTION The time development operator is given by

U(t ) = e — e- ‘(0oS.xt/h

Since

e - iw Q S x t / h  _  e - i S x<p/h _

where <p = co0t , the Hamiltonian causes the spin to rotate, or precess, about 
the x axis in this case. In order to work out the action of the time development

8 Three comments about this expression are in order. (1) Since a neutron is a neutral particle, it 
might seem strange for it to have a magnetic moment at all. That g /2  =  —1.91 is an indication that 
the neutron is not itself a fundamental particle, but rather is composed of more fundamental charged 
constituents called quarks. (2 ) In nuclear physics, magnetic moments are generally expressed in 
terms of the nuclear magneton where the mass M in (4.32) is really the mass of the proton. Since 
the mass of the proton differs from the mass of the neutron by less than 0.2  percent, we can ignore 
this distinction unless we are interested in results to this accuracy. (3) The time T can be expressed 
as T =  IM / p , where p  is the momentum of the neutron and / is the path length in the magnetic 
field region. We can then use the de Broglie relation p =  h/X  [see (6.56)1 to express this time in 
terms of the wavelength of the neutron. It is actually X that is determined when selecting the energy 
of the neutron beam using the techniques of crystal diffraction.
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operator on the state 1^ ( 0 )), we need to express 1^ ( 0 )) in terms of the 
eigenstates |+x) and |—x) of the Hamiltonian. Note that

m 0 ) )  = |+z>

=  |+ x)(+ x |+ z) +  | x)( x|+z)

= v ! l + x ) + v f ' - 1 0

Thus

e -i(D Q t/2  J(O Q t

=^ r l+x>+̂ '- x>
Expressing the states |+x) and |—x) in terms of the states |+z) and |-z), we 
see that

e - i a n ) t / 2  g ia )Q t/2

1^(0) =  — -—  (|+Z> +  I z)) +  — (|+z> -  | Z»

=  -  (eiM°t/2 + e~iw°t/2>j  |+z> -  -  (ei(O0t/2 -  e- iWQl/2) \-z)

=  cos — |+z) -  / sin <̂- \ —z)
2  2

We can use this result to calculate, for example, (Sz):

h= — COS (0()t

This is the same result that we obtained for (Sx) in (4.28). After all, 
although in this example the magnetic field pointed in the x direction and 
the particle’s state was initially spin up along the z axis, you could have 
chosen to label these axes the z and x axes, respectively, making this example 
problem exactly the same as the example worked out at the beginning of 
this section. The main reason for including this example problem here is to 
emphasize the strategy for working out time dependence when the initial 
state is not an eigenstate of the Hamiltonian, namely, write the initial state 
as a superposition of the eigenstates of the Hamiltonian and then apply the 
time development operator to this superposition.
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4.4 Magnetic Resonance

When a spin-^ particle processes in a magnetic field in the z direction, the probability 
of the particle being spin up or spin down along z doesn’t vary with time, as 
shown in (4.22). After all, the states |+z) and |—z) are stationary states of the 
Hamiltonian (4.17). However, if we alter the Hamiltonian by applying in addition an 
oscillating magnetic field transverse to the z axis, we can induce transitions between 
these two states by properly adjusting the frequency of this transverse field. The 
energy difference E+ — E_ = fi(oQ can then be measured with high accuracy. This 
magnetic resonance gives us an excellent way of determining coq. Initially, physicists 
used magnetic resonance techniques to make accurate determinations of g factors 
and thus gain fundamental information about the nature of these particles. On the 
other hand, with known values for g, one can use the technique to make accurate 
determinations of the magnetic field B0 in which the spin is processing. For electrons 
or nuclei in atoms or molecules, this magnetic field is a combination of the known 
externally applied field and the local magnetic field at the site of the electron or 
nucleus. This local field provides valuable information about the nature of the bonds 
that electrons in the atom make with neighboring atoms in a molecule. More recently, 
magnetic resonance imaging (MRI) has become an important diagnostic tool in 
medicine.

The spin Hamiltonian for magnetic resonance is given by

H = - j i  • B =  - - ^ - S  • B =  - - ^ - S  • (fl, cos cot i +  B0k) (4.34)
2m c 2m c

where the magnetic field includes a constant magnetic field in the z direction and an 
oscillating magnetic field in the x direction. As we did for spin precession, we choose 
q = — e and set egB$/2mc = coq. We also define egB\/2mc = co\. The Hamiltonian 
can now be written as

H = coqSz +  o>i(cos <ot)Sx (4.35)

This Hamiltonian is time dependent, so we cannot use the expression (4.9) for the 
time-evolution operator. 9

To determine how spin states evolve in time, we return to the Schrodinger 
equation (4.8). Let’s take the state of the particle at time t = 0 to be |+z). We will 
work in the Sz basis and express \ifr(t)) in this basis by

9 If we were to choose our total system to be sufficiently large, including, in this example, the 
energy of both the spin system and the electromagnetic field, we would find that the total energy 
is conserved. Here we are treating the magnetic field as an external field acting on the quantum 
spin system.
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/  a(t) \

<436)

with the initial condition

l * < 0 » - ( J )  (4.37)

In this basis, the time-development equation H\xf/(t)) = ihd\xj/(t))/dt is given by

f t /  cc0  =  (43g)
2  Vo^cosatf — co0 )  \b ( t )  )  \b ( t )  /

where a(t) = da/dt  and b(t) = db/dt.  This coupled set of first-order differential 
equations cannot be solved exactly. In practice, however, the transverse field Bx is 
significantly weaker than the field B0 in the z direction and therefore the frequency 
co{ is considerably smaller than co0. We can take advantage of this fact to obtain an 
approximate solution to (4.38).

First, note that if co\ = 0, the solution to (4.38) is

a(t) = a(0)e-i(O°t/2 and b(t) = b(0)eico°t/2 (4.39)

in agreement with the time dependence of our earlier results (4.20). This suggests 
that we try writing

_ /c(t)e > ^ 2\  
W ) /  ”  \d ( t )e i(°o^2 )

(4.40)

where we expect that we have included the major part of the time dependence in the 
exponentials. If we substitute (4.40) into (4.38), we obtain

f ( . I =  — cos cor I I
\d ( t ) /  2 Vc(r)c"l“o'/

_  co, /  dU) \
4  +  e-i((Oo+<o)t̂  c{t)J

Unless (o is chosen to be very near to co0, both the exponentials in the second line 
of (4.41) are rapidly oscillating functions that when multiplied by a more slowly 
oscillating function such as c ( 0  or d(t), whose time scale is set by a)), will cause 
the right-hand side of (4.41) to average to zero . 1 0  However, if co is near co0, the terms 
oscillating at co0 +  co can be neglected with respect to those oscillating at co0 — co, 
and these latter terms are now oscillating sufficiently slowly that c and d vary with

10 In a typical electron spin resonance (ESR) experiment in a field of 104 gauss, co0 ~  1011 Hz,
while for nuclear magnetic resonance (NMR) with protons in a comparable field, co0 ~  108 Hz.
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time. Here we will solve for this time dependence when co is equal to co0, the resonant 
condition, and leave the more general case as a problem.

Setting co = (o0 and neglecting the exponentials oscillating at 2co0, we obtain

If we take the time derivative of these two coupled equations and then use (4.42) to 
eliminate the terms involving a single derivative, we obtain the uncoupled second- 
order differential equations

The solution to (4.43) satisfying the initial condition c(0) =  1 and d(0) =  0 [see 
(4.42)] is c(t) = cos>(a)\t/4) and d(t) = —i sin(a;j//4). Thus the probability of find­
ing the particle in the state |—z) at time t is given by

for a spin-^ particle that initially resides in the state |+z) at / =  0. Similarly, the 
probability of finding the particle in the state |+z) is given by

Of course, these two probabilities sum to one, since these two states form a complete 
set and probability is conserved in time. If a particle initially in the state |+z) 
makes a transition to the state |—z), the energy of the spin system is reduced by 
E+ — E_ = fico0, assuming co0 > 0. This energy is added to the electromagnetic 
energy of the oscillating field that is stimulating the transition. For t between zero 
and 2jt/cob the probability of making a transition to the lower energy state grows 
until b*(t)b(t) = 1 and a*(t)a(t) =  0. Then the particle is in the state |—z). Next 
for t between 2ji/ cd\ and 4ji/ cd\, the probability of being in the lower energy state 
decreases and the probability of being in the higher energy state grows as the system 
absorbs energy back from the electromagnetic field. This cycle of emission and 
absorption continues indefinitely (see Fig. 4.5).

As noted earlier, there is a probability of inducing a transition between the two 
spin states even when the frequency co is not equal to co0. If the system is initially 
in the spin-up state, the probability of being in the lower energy spin-down state at 
time t is given by Rabi’s formula (see Problem 4.9),

(4.42)

(4.43)

|(— z\\J/(t))\2 = b*(t)b(t) = d*(t)d(t) = sin2  —  (4.44a)
4

\(-z\\f/(t))\2 =a*(t)a(t) = c*(t)c(t) =  cos2  ^  (4.44b)
4

l ( - z |^ ( 0 > | 2  =
coj/4

sin2 -------------------------- 1
2

2 y j ( " o  -  w ) 2 +  a > ? / 4
(4.45)

(coq ~  CO)2 + CO2/ 4
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Figure 4 .5  The probabilities |(+z|V K O )l2 (solid 
line) and \(—z\\Js(t))\2 (dashed line) for a spin-! 
particle that is in the state |+ z ) at t = 0  when the 
time-dependent magnetic field in the x direction is 
tuned to be resonant frequency.

Figure 4 .6  A sketch o f the magnetic-resonance tran­
sition probability as a function o f the frequency co o f  
the time-dependent magnetic field.

The maximum probability of transition is plotted as a function of co in Fig. 4.6. 
Monitoring the losses and gains in energy to the oscillating field as a function of co 
gives us a nice handle on whether the frequency of this field is indeed the resonant 
frequency of the spin system. Notice in (4.45) that making B j smaller makes co{ 
smaller and the curve in Fig. 4.6 narrower, permitting a more accurate determination
of COq.

In practice, the physical spin system consists of a large number of particles, 
either electrons or nuclei, that are in thermal equilibrium at some temperature T. 
The relative number of particles in the two energy states is given by the Boltzmann 
distribution, so slightly more of the particles are in the lower energy state. There 
will be a net absorption of energy proportional to the difference in populations of 
the two levels, since the magnetic field induces transitions in both directions. Of 
course, if we just sit at the resonant frequency, the populations will equalize quickly 
and there will be no more absorption. Thus, in practice, it is necessary to move the 
system away from resonance, often by varying slightly the field Bq, thus permitting 
thermal equilibrium to be reestablished. In the case of nuclear magnetic resonance, 
the nuclear magnetic moments are located at the center of the atoms, surrounded by
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electrons, and are relatively isolated thermally from their surroundings. Therefore, it 
can be difficult to get the nuclear spins to “relax” back to thermal equilibrium, even 
when the resonance condition no longer persists. In this case thermal contact can be 
increased by doping the sample with paramagnetic ions.

4.5 The Ammonia Molecule and the Ammonia Maser

As our last example in this chapter of a two-state system, we consider the ammonia 
molecule. 1 1 At first glance, the ammonia molecule does not seem a promising 
hunting ground for a two-state system. After all, NH3  is a complicated system of 
four nuclei and ten electrons interacting with each other to form bonds between 
the atoms, making the stable state of the molecule a pyramid with three hydrogen 
atoms forming the base and a nitrogen atom at the apex (see Fig. 4.7). Here we won’t 
worry about all of this internal dynamics, nor will we concern ourselves with how the 
molecule as a whole is rotating or translating. Rather, we will take the molecule to be 
in a fixed state as regards all of these degrees of freedom and focus on the location of 
the nitrogen atom; namely, is the nitrogen atom above or below the plane formed by 
three hydrogen atoms? The existence of a reasonably well-defined location for the 
nitrogen atom indicates that there is a potential well in which the nitrogen atom finds 
it energetically advantageous to reside. However, the geometry of the molecule tells 
us that if there is a potential well above the plane, there must be a similar well below 
the plane. Which state does the nitrogen atom choose? Nature likes to find the lowest 
energy state, so we are led to solve the energy eigenvalue problem to determine the 
allowed states and energies of the system.

We introduce two kets:

11) =  |N above the plane) and |2) =  |A? below the plane) (4.46)

and construct the matrix representation of the Hamiltonian using these two states, 
depicted in Fig. 4.7, as basis states. The symmetry of the two physical configurations 
suggests that the expectation value of the Hamiltonian in these states, an energy that 
we denote by £ 0, should be the same for the two states. Thus

<1|//|1) =  <2|//|2) =  £ 0  (4.47)

where H is the Hamiltonian of the system. What about the off-diagonal matrix 
elements? If we look back to our discussion of time evolution of the spin system 
in magnetic resonance, we see that when we set the off-diagonal matrix elements 
of the Hamiltonian in (4.38) equal to zero, the spin-up and spin-down states were 
stationary states; if the system were in one of these states initially, it remained in

11 Our discussion of the ammonia molecule as a two-state system is inspired by the treatment 
in vol. 3 of The Feynman Lectures on Physics.
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Figure 4.7 The two states o f the am­
monia molecule with (a) the nitrogen 
atom above the plane in state | 1) and 
(b) the nitrogen atom below the plane 
in state |2 ).

that state forever, as (4.39) shows. For the ammonia molecule, the vanishing of the 
off-diagonal matrix elements, such as (2| H | 1), would mean that a molecule initially, 
for example, in the state 11), with the N atom above the plane, would remain in that 
state. Now, if the potential barrier between the two wells were infinitely high, there 
would be no chance that a nitrogen atom above the plane in state 1 1 ) would be found 
below the plane in state |2). However, although the energy barrier formed by the 
three hydrogen atoms is large, it is not infinite, and there is a small amplitude for 
a nitrogen atom to tunnel between the two states. This means that the off-diagonal 
matrix element (2\H\\) is nonzero. We will take its value to be —A. Thus in the 
1 1 )-|2 ) basis

/< 1 |//|1 ) ( 1 |/ / |2 ) \  =  /  E0 —A \

V<2|tf|l) (2\H\2))  \  —A E0 )
(4.48)

where A is a positive constant. We will see that this sign for A is required to get the 
correct disposition of the energy levels. Note that if, as we have presumed, the off- 
diagonal matrix elements are real, Hermiticity of H, as well as the symmetry of the 
situation, requires that they be equal. In principle, if we were really adept at carrying 
out quantum mechanics calculations for molecules, we would be able to calculate 
the value of A from first principles. We can think we understand all the physics of 
the electromagnetic interactions responsible for holding the molecule together, but 
NH3  is composed of a large number of particles and no one is able to work out all 
the details. We can think of (4.48) as a phenomenological Hamiltonian where the 
value for a constant such as A must be determined experimentally.

We are now ready to determine the energy eigenstates and eigenvalues of H. The 
energy eigenvalue equation

H\x/f) = E\x/f) (4.49)

in the | 1 )-|2 ) basis is given by

/  e 0 - A \ / m ) \  = E / < n m

V —A E0 ) \ (  2 |V 0 / V <2|V0 /
(4.50)



130 I 4. Time Evolution

Eo +A

2A

i Eq - A  Figure 4 .8  The two energy levels o f the ammonia molecule.

The eigenvalues are determined by requiring

E0 - E  - A  
- A  E 0  -  E

=  0 (4.51)

which yields E =  E0  ±  A. We will denote the energy eigenstate with energy 
Ej = E0 — A by |/). Substituting the eigenvalue into (4.50) shows that (\\I) = (2\I), 
so that we may write1 2

Energy eigenstate | //) with energy En =  E0  +  A satisfies (1|//) =  —(2|//) and thus 
may be written as

The existence of tunneling between the states |1) and |2) has split the energy 
states of the molecule into two states with different energies, one with energy 
E0 — A and the other with energy £ 0  +  A, as shown in Fig. 4.8. The wavelength 
of the electromagnetic radiation emitted when the molecule makes a transition 
between these two energy states is observed to be 1 J cm, corresponding to an energy 
separation En — Ej = hv = hc/X of 10“ 4  eV. This small energy separation is to 
be compared with a typical spacing of atomic energy levels that is on the order of 
electron volts, requiring optical or uv photons to excite the atom. Molecules also have 
vibrational and rotational energy levels, but these modes sire excited by photons in 
the infrared or far infrared, respectively. Exciting an ammonia molecule from state 
| /) to state | //) requires electromagnetic radiation of an even longer wavelength, 
in the microwave part of the spectrum. The smallness of this energy difference 
Eu — Ej = 2A is a reflection of the smallness of the amplitude for tunneling from 
state 1 1 ) to |2 ).

Notice that neither in energy eigenstate |/)  nor | //) is the nitrogen atom located 
above or below the plane formed by the three hydrogen atoms. Under the transforma­
tion 1 1 ) •<->> |2 ) that flips the position of the nitrogen atom, the state |/)  is symmetric, 
that is, |/)  —► |/) , while the state | //) is antisymmetric, that is, | //) —► — |//). Wecan,

12 In the normalization of the state, we have neglected the nonzero amplitude (2| 1) because of 
its small magnitude.

(4.52)

(4.53)
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however, localize the nitrogen atom above the plane, for example, by superposing 
the energy eigenstates:

i d = 4 = i/ ) + - 5 = i//)
V2 V2

(4.54)

If ItA(O)) =  11), then

|^ ( 0 > = e~ifl'lh

g —i(E(y—A)r/h

= n

_ e - i( E o -A ) t/ t i

O + T!1"1)
~—i(Eo+A)t/h 

|/> +  ------- ^ ----- 1 //>

(a

V 2

„ - 2  i A t / h  \  

| / )  +  - 7 r | / / ) (4.55)

where in the last step we have pulled an overall phase factor out in front of the 
ket. Since the initial state of the molecule is a superposition of energy states with 
different energies, the molecule is not in a stationary state. We see that the relative 
phase between the two energy eigenstates changes with time, and thus the state of the 
molecule is really varying in time. The motion is periodic with a period T determined 
from 2AT/h  = 2jt. What is the nature of the motion? When t = T/ 2, the relative 
phase is n  and

|\f/(T/ 2 )) =  (overall phase) )=  (overall phase) |2 ) (4.56)

The nitrogen atom is located below the plane. Thus the nitrogen atom oscillates back 
and forth above and below the plane with a frequency v = \ /T  = A/jtfi = 2Ajh.  
This frequency, which equals 24 GHz, is the same as the frequency of the electro­
magnetic radiation emitted when the molecule makes a transition between states | //) 
and |/) .

THE MOLECULE IN A STATIC EXTERNAL ELECTRIC FIELD

Since the valence electrons in the ammonia molecule tend to reside somewhat closer 
to the nitrogen atom, the nitrogen atom is somewhat negative and the hydrogen atoms 
are somewhat positive. Thus the molecule has an electric dipole moment fie directed 
away from the nitrogen atom toward the plane formed by the hydrogen atoms. Just 
as the magnetic dipole moment associated with its spin angular momentum allowed 
us to interact with a spin- \ particle in Stem-Gerlach or spin-precession experiments 
by inserting it in a magnetic field, we can interact with the ammonia molecule by 
placing it in an external electric field E, as indicated in Fig. 4.9. There is an energy 
of interaction with the electric field of the form — fie • E that will differ depending 
on whether the nitrogen atom is above the plane in state 1 1 ) or below the plane in 
state |2). The presence of this electric field modifies the matrix representation of the
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(a) (b)

Figure 4 .9  The electric dipole mo­
ment f ie o f the ammonia molecule in 
(a) state 11) and(b) state |2). In the pres­
ence o f an external electric field E, the 
two states acquire different energies, 
as indicated in (4.57).

Hamiltonian in the |1)-|2) basis: 1 3

H / Ul t f l D
V<2 | tf| l>

( \ \H\2)\  = / E 0 + n e\E\ - A  \  

<2\H\2)J V —A E0 - n e\E \)
(4.57)

where we assume the external field is sufficiently weak that it does not affect the 
amplitude for the nitrogen atom to tunnel through the barrier. The eigenvalues are 
determined by the requirement that

E0 + fie\E \-E - A
- A  E0 - f x e\E\-E

(4.58a)

or

E = E0 ±  y/oi'\E\)2 + A1 (4.58b)

See Fig. 4.10. Most external electric fields satisfy iie\E\ <& A, so we can expand the 
square root in a Taylor series or a binomial expansion to obtain

E ^ E 0 ± A ± -  -̂ |E|) (4.59)
2 A

As in the Stem-Gerlach experiments where we used an inhomogeneous magnetic 
field to make measurements of the intrinsic spin and select spin-up and spin-down 
states, here we use an inhomogeneous electric field to separate NH3  molecules into 
those in states 11) and | //). If we call the direction in which the electric field increases 
the z direction, then the force in that direction is given by

13 It is customary to use fie for the electric dipole moment to avoid confusion with the symbol 
for momentum. We also use |E| for the magnitude of the electric field to avoid confusion with the 
symbol for energy.
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E

Figure 4.10 The energy levels o f the 
ammonia molecule in an external electric 
field.

Figure 4.11 A beam o f ammonia 
molecules passing through a region 
in which there is a strong electric 
field gradient separates into two 
beams, one with the molecules in 
state | / )  and the other with the 
molecules in the state | / / ) .

Notice that the minus sign in (4.59) corresponds to the state with energy E0 — A in the 
absence of the external electric field. Hence a molecule in state |/)  will be deflected 
in the positive z direction, while a molecule in the state | //) will be deflected in the 
negative z direction, as shown in Fig. 4.11. Because of the small value of A in the 
denominator in (4.60), it is relatively easy to separate a beam of ammonia molecules 
in, for example, a gas jet by sending them through a region in which there is a large 
gradient in the electric field.

THE MOLECULE IN A TIME-DEPENDENT ELECTRIC FIELD

We are now ready to induce transitions between states |/)  and | //) by applying a 
time-dependent electric field of tlje form E =  E0  cos cot. There will be a resonant 
absorption or emission of electromagnetic energy, provided that hco is equal to the 
energy difference 2A between the two states. This sounds similar to the magnetic 
resonance effects that we treated in the previous section, and in fact the mathematics 
describing the two problems is essentially identical. To see this, consider the Hamil­
tonian in the 11)-|2) basis as given in (4.57) with a time-dependent electric field. If 
we transform to the |/ ) - |/ / )  basis, we obtain (see Problem 4.10)

^  {I\H\II) \  /  Eo ~ A  mJEoIcos cot\
V <//|tf|/>  \  m JE0| cos cot Eq + A )

Comparing this matrix with that for the Hamiltonian in (4.38) of a spin-^ particle in 
an oscillating transverse magnetic field, we see that it is possible to draw a one-to-one 
correspondence between each term in the two matrices: E+ = hco0/2 —► E0 + A,
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E_ = —h(o0/2  —► Eg — A, and hco\/2 |E0|. Thus one can follow the steps
leading to the probability of making a transition between the spin-up and spin- 
down states in (4.44) and apply them to this new problem to obtain the probability 
of making a transition between states |/)  and | //). Therefore, at resonance the 
probability of finding the ammonia molecule in state |/)  for a molecule initially 
in the state |//)  at time t = 0  is

|< W (r))l 2  =  s m - ^ ^ i ^  (4.62)
2  n

We can combine the results of this section and the preceding one to provide a 
description of a simple ammonia maser (Microwave Amplification by Stimulated 
Emission of Radiation). First we use an inhomogeneous electric field to select a 
beam of ammonia molecules that are in the upper energy state | //); then we send 
this beam into a microwave cavity whose resonant frequency is tuned to 24 GHz, 
the resonant frequency of the ammonia molecule. If the molecules spend a time T 
in the cavity such that fie\E0\T/2fi = n /2 , then according to (4.62) they will all 
make transitions from state | //) to state |/) . The molecular energy released in this 
transition is fed into the cavity, where it can be used as microwave radiation . 1 4

4.6 The Energy-Time Uncertainty Relation

As our last topic on time evolution, let’s consider the energy-time uncertainty relation

AE At  > -  (4.63)
~  2

The uncertainty relation is somewhat of a misnomer; unlike our previous uncertainty 
relations such as (3.74), only AE  in (4.63) is a legitimate uncertainty. It reflects the 
spread in energy characterizing a particular state. To see the meaning of At, consider 
an example. Let’s return to the ammonia molecule that is initially in state 11), with the 
nitrogen atom above the plane. As (4.55) shows, this state is not an energy eigenstate 
but a superposition of two energy eigenstates with different energies. The uncertainty 
in the energy of a molecule in this state is given by

A £ = ( < £ 2 ) - < £ > 2 ) 1 / 2

I r - . 2 1  > / 2

=  | 5 ( ^ 0  +  A)~ +  \{Eq — A)2 — |^ (£ o  +  A) +  \{Eq — A)J |

=  A (4.64)

14 The key element missing from our discussion of the maser is the coherent nature of the 
radiation that it produces. So far we have treated the electromagnetic field as a classical field and 
have not taken into account its quantum properties, that is, that it is really composed of photons. 
We will examine this issue in more detail in Chapter 14.
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We can express the time evolution of the state (4.55) in terms of the uncertainty 
A E as

1^ ( 0 ) =  (overall phase)
V 2

|/> +
e~2iAEt/h

■Ji
(4.65)

How long do we have to wait before the state of the molecule changes? The answer 
to this question is the quantity we call At. To be sure the state (4.65) has changed, 
we need to be sure the relative phase between the energy eigenstates |/)  and | //) 
has changed significantly from its value of zero at t = 0  to something of order unity. 
This requires that the time interval At satisfy 2A E A t /h  ^  1, which is in accord 
with (4.63).15 In (4.55) we saw that the time required for the nitrogen atom to appear 
below the plane in state |2 ) is determined by the requirement that the relative phase 
change by n.  Thus the time interval At determined by (4.63) is roughly one-third of 
the time required for the nitrogen atom to oscillate from above to below the plane.

Notice that if, instead of being in a superposition of energy eigenstates with 
different energies, the state of the molecule had been an energy eigenstate, there 
would be a definite value for the energy of the molecule, and hence AE  =  0. But in 
this case, the ket would pick up only an overall phase as time evolved, and the time 
interval At  required for the state to change would be infinite. An energy eigenstate 
is really a stationary state.

Our discussion and example should make clear that At  is not an uncertainty at all. 
Time in nonrelativistic quantum mechanics is just a parameter and not a dynamical 
variable like energy, angular momentum, position, or momentum with which there 
may be an uncertainty depending on the state of the system. When we discuss the 
state of the system at time t, there is no inherent limit on how accurately we can 
specify this time.

In the example we chose a particular initial state |xfr) and then examined the 
length of the evolutionary time At  for that state to change. Now that we understand 
the meaning of the uncertainty relation (4.63), we can turn this around slightly. An 
atom (or an ammonia molecule) in an excited-energy state will not remain in this 
state indefinitely, even if undisturbed by any outside influence. It will decay to lower 
energy states with some lifetime r. In Chapter 14 we will see how to calculate the 
lifetime for excited states of the hydrogen atom using the Hamiltonian arising from 
the interactions of charged particles with the electromagnetic field. Thus an excited 
state is not a stationary state, and the lifetime r sets a natural evolutionary time for 
that state. Therefore, from (4.63) there must be an uncertainty in the energy of the 
excited state given by AE  ~  hf  r. Photons emitted in this transition will have not

15 We have taken the lower limit in this example as an approximate equality since we have 
somewhat arbitrarily chosen to say that the system has changed when the phase in (4.65) reaches 
one. A more formal derivation of (4.63) and corresponding specification of At are given in 
Example 4.3.
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a definite energy but rather a spread in energies. This is the origin of the natural 
linewidth (see Problem 4.16).

EXAMPLE 4.3 Consider any observable A associated with the state of the 
system in quantum mechanics. Show that there is an uncertainty relation of 
the form

provided the operator A does not depend explicitly on time. The quantity 
AA/\d(A)/dt\  is a time that we may call At. What is the physical signifi­
cance of At ?

SOLUTION Recall that [A, B] = iC implies that AAAB > |(C )|/2. Start 
with the commutator [/4, H]\ then

a a a e >^\(m a . HW)I

But since

then

dt fir

A A A E > — 
~  2

d(A)
dt

or

If we define

\d(A)/dt |

then

hAAAt > -  
~  2

The time At is the time necessary for the expectation value to change by 
an amount on the order of the uncertainty. Thus it is the time you need to wait 
to be sure that the results of measuring A have really changed. For example, 
for position, if Ax  =  1 cmdx\dd{x) /dt = 1 mm/s,then Ax/\d(x)/dt \ = 10s, 
which is the time necessary for (jc) to shift by an amount Ajc.
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Time development is where much of the action occurs in quantum mechanics. To 
move states forward in time, we introduce a time-evolution operator 0  (t ) so that

\f(t)) = d ( m m  (4.66)

In order for probability to be conserved as time evolves,

( H o m o )  =
= m o M m  (4.67)

and consequently the operator U(t) must be unitary:

V \ t )U (t )  = 1 (4.68)

The Hamiltonian H , the energy operator, enters as the generator of time translations 
through the infinitesimal time-evolution operator:

U(dt) = \ - - H d t  (4.69)
h

The unitarity requirement (4.68) then dictates that the Hamiltonian is Hermitian. 
The time-evolution operator obeys the differential equation

HU(t) = ifi— U (t) (4.70)
dt

leading to the Schrodinger equation:

H |* ( r ) ) = i f t 4 |^ (,)) (4.71)
dt

A particularly useful solution to (4.70) occurs when the Hamiltonian is indepen­
dent of time, in which case the time^development operator is given by

U(t) = e~i^ t/ti (4.72)

The action of the time-development operator (4.72) on an energy eigenstate | E) is 
given by

e - ifn/h\E ) =e~iEt/li\E) (4.73)

showing that a single energy eigenstate just picks up an overall phase as time evolves 
and is therefore a stationary state. Time evolution fora state | xfr) that can be expressed 
as a superposition of energy eigenstates as

IlMO)) =  \E„)(E„mO)) (4.74)
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is given by

IV 'U ))= e-,'w,/fi^ |£ „ ) ( £ J i / ' ( 0 ))
n

=  £ > “i£" '/ 6 |E,,)<£,IllH0)) (4.75)
n

When the superposition (4.74) involves states with different energies, the relative 
phase between the energy eigenstates changes with time. The time At  (the evolu­
tionary time) necessary for the system to change with time in this case satisfies

y-

AE At  > -  (4.76)
“  2

where AE  is the usual uncertainty in energy for the state |V0- 
Expectation values satisfy

~ { A )  = i4M «)> +  W O l ^ V t t ) )  (4-77)
dt h dt

which tells us that observables that do not explicitly depend on time will be constants 
of the motion when they commute with the Hamiltonian.

Although this chapter is devoted to time evolution, the similarity between the 
operators that generate rotations [see (3.10)] and the operator that generates time 
translations [see (4.72)] is striking. Or compare the form for an infinitesimal rotation 
operator R(d<j>n) =  1 — i Jnd<f>/fi for rotations by angle d<f> about the axis specified 
by the unit vector n with the infinitesimal time translation operator (4.69). We can 
actually tie the rotation operator and the time-evolution operator together with a 
common thread—namely, symmetry. A symmetry operation is one that leaves the 
physical system unchanged, or invariant. For example, if the Hamiltonian is invariant 
under rotations about an axis, the generator of rotations about that axis must commute 
with the Hamiltonian. But (4.77) then tells us that the component of the angular 
momentum along this axis is conserved, since its expectation value doesn’t vary in 
time. Also, if the Hamiltonian is invariant under time translations, which simply 
means that H is independent of time, then of course energy is conserved. We will 
have more to say about symmetry, especially in Chapter 9, but this is our first 
indication of the important connection between symmetries of a physical system 
and conservation laws.

Problems

4.1. Show that unitarity of the infinitesimal time-evolution operator (4.4) requires 
that the Hamiltonian H be Hermitian.

4.2. Show that if the Hamiltonian depends on time and [/7(f)), H (/2)] =  0, the time- 
development operator is given by
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£>(t) =  exP r - i  j f dt 'H( t ’)

4.3. Use (4.16) to verify that the expectation value of an observable A does not 
change with time if the system is in an energy eigenstate (a stationary state) and A 
does not depend explicitly on time.

4.4. A beam of spin-4 particles with speed v0 passes through a series of two 
SGz devices. The first SGz device transmits particles with Sz = h/2  and filters 
out particles with Sz = —h/2. The second SGz device transmits particles with 
Sz =  —h/2 and filters out particles with Sz = h/2. Between the two devices is a 
region of length / 0  in which there is a uniform magnetic field B0 pointing in the 
x direction. Determine the smallest value of / 0  such that exactly 25 percent of the 
particles transmitted by the first SGz device are transmitted by the second device. 
Express your result in terms of coq = egB0/2mc and v0.

4.5. A beam of spin-^ particles in the |+z) state enters a uniform magnetic field B0 
in the x-z plane oriented at an angle 6 with respect to the z axis. At time T later, the 
particles enter an SGy device. What is the probability the particles will be found with 
Sy = h /2? Check your result by evaluating the special cases 0 = 0  and 6 =n/2 .

4.6. Verify that the expectation values (4.23), (4.28), and (4.30) for a spin-^ particle 
processing in a uniform magnetic field B0 in the z direction satisfy (4.16).

4.7. Use the data given in Fig. 4.3 to determine the g factor of the muon.

4.8. A spin-^ particle, initially in a state with Sn = h/2 with n =  sin 6 i +  cos 6 k, is 
in a constant magnetic field B0 in the z direction. Determine the state of the particle 
at time t and determine how (Sx), (Sv), and (Sz) vary with time.

4.9. Derive Rabi’s formula (4.45).

4.10. Express the Hamiltonian (4.57) for the ammonia molecule in the |/ ) - |/ / )  basis 
to obtain (4.61). Assume the electric field E =  E 0  cos cot. Compare this Hamiltonian 
with that for a spin- 4  particle in a time-dependent magnetic field that appears 
in (4.38) and deduce the form for the probability of finding the molecule in state 
|/)  at time t if it is initially placed in the state | //); that is, what is the analogue of 
Rabi’s formula (4.45) for the ammonia molecule?

4.11. A spin-1 particle with a magnetic moment fi = (gq/2mc)S is situated in a 
magnetic field B =  Z?0k in the z direction. At time t =  0  the particle is in a state with 
Sy = h [see (3.115)]. Determine the state of the particle at time t. Calculate how the 
expectation values (Sx), (Sv), and (Sz) vary in time.

4.12. A particle with intrinsic spin one is placed in a constant external magnetic field 
B0 in the x direction. The initial spin state of the particle is |rfr(0)) =  | 1, 1), that is.
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a state with Sz = h. Take the spin Hamiltonian to be

H =  coqSx

and determine the probability that the particle is in the state | 1 , —1 ) at time t. 
Suggestion: If you haven’t already done so, you should first work out Problem 3.15 
to determine the eigenstates of Sx for a spin-1 particle in terms of the eigenstates 
of Sz.

be the matrix representation of the Hamiltonian for a three-state system with basis 
states 11), |2), and |3).

(a) If the state of the system at time t = 0 is 1^(0)) =  |2), what is |^ (/))?
(b) If the state of the system at time t = 0 is 1^(0)) =  |3), what is 1^(0)?

4.14. The matrix representation of the Hamiltonian for a photon propagating along 
the optic axis (taken to be the z axis) of a quartz crystal using the linear polarization 
states |x) and |y) as basis is given by

(a) What are the eigenstates and eigenvalues of the Hamiltonian?
(b) A photon enters the crystal linearly polarized in the x direction, that is 

|^(0)) =  |x). What is the \ifr(t)), the state of the photon at time r? Express 
your answer in the |x)-|y) basis. Show that the photon remains linearly 
polarized as it travels through the crystal. Explain what is happening to the 
polarization of the photon as time increases.

4.15. If the Hamiltonian for a spin-| particle is given by

and at time t =  0  1^ ( 0 )) =  1 3 ), determine the probability that the particle is in the 
state | —\) at time t. Evaluate this probability when t = 7t/co0 and explain your 
result. Suggestion: See Problem 3.23 for the eigenstates of Sx.

4.16. The lifetime of hydrogen in the 2p state to decay to the Is ground state is 
1.6 x 10" 9  s [see (14.169)]. Estimate the uncertainty AE in energy of this excited 
state. What is the corresponding linewidth in angstroms?

4.13. Let

/ E 0 0 A \

0 £, 0 
\ A  0 E j

H = co0Sx
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